Worldwide phylogenetic relationship of avian poxviruses

Miklós Gyuranecz, Jeffrey T. Foster, Ádám Dán, Hon S. Ip, Kristina F. Egstad, Patricia G. Parker, Jenni M. Higashiguchi, Michael A. Skinner, Ursula Höfle, Zsuzsa Kreizinger, Gerry M. Dorrestein, Szabolcs Solt, Endre Sós, Young Jun Kim, Marcela Uhart, Ariel Pereda, Gisela González-Hein, Hector Hidalgo, Juan Manuel Blanco, Károly Erdélyi

Research output: Contribution to journalArticlepeer-review

118 Scopus citations

Abstract

Poxvirus infections have been found in 230 species of wild and domestic birds worldwide in both terrestrial and marine environments. This ubiquity raises the question of how infection has been transmitted and globally dispersed. We present a comprehensive global phylogeny of 111 novel poxvirus isolates in addition to all available sequences from GenBank. Phylogenetic analysis of the Avipoxvirus genus has traditionally relied on one gene region (4b core protein). In this study we expanded the analyses to include a second locus (DNA polymerase gene), allowing for a more robust phylogenetic framework, finer genetic resolution within specific groups, and the detection of potential recombination. Our phylogenetic results reveal several major features of avipoxvirus evolution and ecology and propose an updated avipoxvirus taxonomy, including three novel subclades. The characterization of poxviruses from 57 species of birds in this study extends the current knowledge of their host range and provides the first evidence of the phylogenetic effect of genetic recombination of avipoxviruses. The repeated occurrence of avian family or order-specific grouping within certain clades (e.g., starling poxvirus, falcon poxvirus, raptor poxvirus, etc.) indicates a marked role of host adaptation, while the sharing of poxvirus species within prey-predator systems emphasizes the capacity for crossspecies infection and limited host adaptation. Our study provides a broad and comprehensive phylogenetic analysis of the Avipoxvirus genus, an ecologically and environmentally important viral group, to formulate a genome sequencing strategy that will clarify avipoxvirus taxonomy.

Original languageEnglish (US)
Pages (from-to)4938-4951
Number of pages14
JournalJournal of Virology
Volume87
Issue number9
DOIs
StatePublished - May 2013

ASJC Scopus subject areas

  • Microbiology
  • Immunology
  • Insect Science
  • Virology

Fingerprint

Dive into the research topics of 'Worldwide phylogenetic relationship of avian poxviruses'. Together they form a unique fingerprint.

Cite this