@article{257efcc048124f88b40ad4ca4d5e60dd,
title = "Valley splitting of single-electron Si MOS quantum dots",
abstract = "Silicon-based metal-oxide-semiconductor quantum dots are prominent candidates for high-fidelity, manufacturable qubits. Due to silicon's band structure, additional low-energy states persist in these devices, presenting both challenges and opportunities. Although the physics governing these valley states has been the subject of intense study, quantitative agreement between experiment and theory remains elusive. Here, we present data from an experiment probing the valley states of quantum dot devices and develop a theory that is in quantitative agreement with both this and a recently reported experiment. Through sampling millions of realistic cases of interface roughness, our method provides evidence that the valley physics between the two samples is essentially the same.",
author = "Gamble, {John King} and Patrick Harvey-Collard and Jacobson, {N. Tobias} and Baczewski, {Andrew D.} and Erik Nielsen and Leon Maurer and In{\`e}s Monta{\~n}o and Martin Rudolph and Carroll, {M. S.} and Yang, {C. H.} and A. Rossi and Dzurak, {A. S.} and Muller, {Richard P.}",
note = "Funding Information: The authors acknowledge useful discussions with F. Mohiyaddin and M. Usman. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. J.K.G. gratefully acknowledges support from the Sandia National Laboratories Truman Fellowship Program, which is funded by the Laboratory Directed Research and Development (LDRD) program. This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science. C.H.Y. and A.S.D. acknowledge support from the Australian Research Council (CE11E0001017), the U.S. Army Research Office (W911NF-13-1-0024) and the NSW Node of the Australian National Fabrication Facility. A.R. acknowledges support from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement No. 654712 (SINHOPSI). Publisher Copyright: {\textcopyright} 2016 Author(s).",
year = "2016",
month = dec,
day = "19",
doi = "10.1063/1.4972514",
language = "English (US)",
volume = "109",
journal = "Applied Physics Letters",
issn = "0003-6951",
publisher = "American Institute of Physics Publising LLC",
number = "25",
}