Using co-polymers to improve soil strength and mitigate fugitive dust emissions: Laboratory evaluation

Chun Hsing Ho, Ziyan Wu, Zhonghan Zhang, Pengxiang Zhao, Junxin Huang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

A report by the Federal Highway Administration (FHWA) in the USA stated that there are over 1.4 million miles (2.3 million kilometres) of unpaved roads in the United States, over 1/3 of the U.S highway systems. Unpaved roads play an important role in transporting goods and passengers in between urban and suburban areas. However, most unpaved roads are gravel and unimproved that have exposed a severe issue for local transportation networks. Particularly when unpaved roads are in wet conditions (rain or snow), the muddy and soft surface roads have created a hazardous environment for traffic operations. The paper presents an improvement plan using co-polymer dust suppressants to be mixed with soils collected in Northern Arizona. Soil samples were mixed with the co-polymer dust suppressants using four concentration rates (0% water, 1%, 3%, and 5% by weight). A series of tests were performed including surface strength (resistant penetration) test, dynamic rolling test, and unconfined compressive shear test. The results show that the addition of co-polymer dust suppressants in the soil has improved the soil shear strength and decreased dust emissions, provided the results from the surface strength test, dynamic rolling test, and unconfined compressive strength test are promising.

Original languageEnglish (US)
Title of host publication7th International Symposium on Deformation Characteristics of Geomaterials, IS-Glasgow 2019
EditorsErdin Ibraim, Alessandro Tarantino
PublisherEDP Sciences
ISBN (Electronic)9782759890644
DOIs
StatePublished - Jun 25 2019
Event7th International Symposium on Deformation Characteristics of Geomaterials, IS-Glasgow 2019 - Glasgow, United Kingdom
Duration: Jun 26 2019Jun 28 2019

Publication series

NameE3S Web of Conferences
Volume92
ISSN (Print)2555-0403
ISSN (Electronic)2267-1242

Conference

Conference7th International Symposium on Deformation Characteristics of Geomaterials, IS-Glasgow 2019
Country/TerritoryUnited Kingdom
CityGlasgow
Period6/26/196/28/19

ASJC Scopus subject areas

  • General Environmental Science
  • General Energy
  • General Earth and Planetary Sciences

Fingerprint

Dive into the research topics of 'Using co-polymers to improve soil strength and mitigate fugitive dust emissions: Laboratory evaluation'. Together they form a unique fingerprint.

Cite this