TY - JOUR
T1 - Use of anthropogenic radioisotopes to estimate rates of soil redistribution by wind II
T2 - The potential for future use of 239+240Pu
AU - Van Pelt, R. Scott
AU - Ketterer, Michael E.
PY - 2013/6
Y1 - 2013/6
N2 - In the previous paper, the use of soilborne 137Cs from atmospheric fallout to estimate rates of soil redistribution, particularly by wind, was reviewed. This method relies on the assumption that the source of 137Cs in the soil profile is from atmospheric fallout following the period of atmospheric weapons testing so that the temporal and, to a certain extent, the spatial patterns of 137Cs deposition are known. One of the major limitations occurs when local or regional sources of 137Cs contamination mask the pulse from global fallout, making temporal estimates of redistribution difficult or impossible. Like 137Cs, Pu exhibits strong affinity for binding to soil particle surfaces, and therefore, re-distribution of Pu inventory indicates inferred soil re-distribution. Compared to 137Cs, 239Pu and 240Pu offer several important advantages: (a) the two major Pu isotopes have much longer half-lives than 137Cs and (b) the ratio 240Pu/239Pu is used to examine whether the Pu is from stratospheric fallout. In this paper, we review the literature concerning Pu in soil and of current attempts to use this tracer to estimate rates of soil redistribution. We also present preliminary, unpublished data from a pilot study designed to test whether or not 239+240Pu can be used to estimate rates of soil redistribution by wind. Based on similarities of profile distribution and relative inventories between 137Cs measurements and 239+240Pu measurements of split samples from a series of fields with documented wind erosion histories, we conclude that 239+240Pu may well be the anthropogenic radioisotope of choice for future soil redistribution investigations.
AB - In the previous paper, the use of soilborne 137Cs from atmospheric fallout to estimate rates of soil redistribution, particularly by wind, was reviewed. This method relies on the assumption that the source of 137Cs in the soil profile is from atmospheric fallout following the period of atmospheric weapons testing so that the temporal and, to a certain extent, the spatial patterns of 137Cs deposition are known. One of the major limitations occurs when local or regional sources of 137Cs contamination mask the pulse from global fallout, making temporal estimates of redistribution difficult or impossible. Like 137Cs, Pu exhibits strong affinity for binding to soil particle surfaces, and therefore, re-distribution of Pu inventory indicates inferred soil re-distribution. Compared to 137Cs, 239Pu and 240Pu offer several important advantages: (a) the two major Pu isotopes have much longer half-lives than 137Cs and (b) the ratio 240Pu/239Pu is used to examine whether the Pu is from stratospheric fallout. In this paper, we review the literature concerning Pu in soil and of current attempts to use this tracer to estimate rates of soil redistribution. We also present preliminary, unpublished data from a pilot study designed to test whether or not 239+240Pu can be used to estimate rates of soil redistribution by wind. Based on similarities of profile distribution and relative inventories between 137Cs measurements and 239+240Pu measurements of split samples from a series of fields with documented wind erosion histories, we conclude that 239+240Pu may well be the anthropogenic radioisotope of choice for future soil redistribution investigations.
KW - Cs
KW - Global fallout
KW - Pu
KW - Radioisotopes
KW - Soil redistribution
KW - Wind erosion
UR - http://www.scopus.com/inward/record.url?scp=84877012482&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84877012482&partnerID=8YFLogxK
U2 - 10.1016/j.aeolia.2013.01.004
DO - 10.1016/j.aeolia.2013.01.004
M3 - Review article
AN - SCOPUS:84877012482
SN - 1875-9637
VL - 9
SP - 103
EP - 110
JO - Aeolian Research
JF - Aeolian Research
ER -