TY - JOUR
T1 - Uranium isotope fractionation during coprecipitation with aragonite and calcite
AU - Chen, Xinming
AU - Romaniello, Stephen J.
AU - Herrmann, Achim D.
AU - Wasylenki, Laura E.
AU - Anbar, Ariel D.
N1 - Publisher Copyright:
© 2016 Elsevier Ltd.
PY - 2016/9/1
Y1 - 2016/9/1
N2 - Natural variations in 238U/235U of marine calcium carbonates might provide a useful way of constraining redox conditions of ancient environments. In order to evaluate the reliability of this proxy, we conducted aragonite and calcite coprecipitation experiments at pH ~7.5 and ~8.5 to study possible U isotope fractionation during incorporation into these minerals.Small but significant U isotope fractionation was observed in aragonite experiments at pH ~8.5, with heavier U isotopes preferentially enriched in the solid phase. 238U/235U of dissolved U in these experiments can be fit by Rayleigh fractionation curves with fractionation factors of 1.00007 + 0.00002/-0.00003, 1.00005 ± 0.00001, and 1.00003 ± 0.00001. In contrast, no resolvable U isotope fractionation was observed in an aragonite experiment at pH ~7.5 or in calcite experiments at either pH. Equilibrium isotope fractionation among different aqueous U species is the most likely explanation for these findings. Certain charged U species are preferentially incorporated into calcium carbonate relative to the uncharged U species Ca2UO2(CO3)3(aq), which we hypothesize has a lighter equilibrium U isotope composition than most of the charged species. According to this hypothesis, the magnitude of U isotope fractionation should scale with the fraction of dissolved U that is present as Ca2UO2(CO3)3(aq). This expectation is confirmed by equilibrium speciation modeling of our experiments. Theoretical calculation of the U isotope fractionation factors between different U species could further test this hypothesis and our proposed fractionation mechanism.These findings suggest that U isotope variations in ancient carbonates could be controlled by changes in the aqueous speciation of seawater U, particularly changes in seawater pH, PCO2, Ca2+, or Mg2+ concentrations. In general, these effects are likely to be small (<0.13‰), but are nevertheless potentially significant because of the small natural range of variation of 238U/235U.
AB - Natural variations in 238U/235U of marine calcium carbonates might provide a useful way of constraining redox conditions of ancient environments. In order to evaluate the reliability of this proxy, we conducted aragonite and calcite coprecipitation experiments at pH ~7.5 and ~8.5 to study possible U isotope fractionation during incorporation into these minerals.Small but significant U isotope fractionation was observed in aragonite experiments at pH ~8.5, with heavier U isotopes preferentially enriched in the solid phase. 238U/235U of dissolved U in these experiments can be fit by Rayleigh fractionation curves with fractionation factors of 1.00007 + 0.00002/-0.00003, 1.00005 ± 0.00001, and 1.00003 ± 0.00001. In contrast, no resolvable U isotope fractionation was observed in an aragonite experiment at pH ~7.5 or in calcite experiments at either pH. Equilibrium isotope fractionation among different aqueous U species is the most likely explanation for these findings. Certain charged U species are preferentially incorporated into calcium carbonate relative to the uncharged U species Ca2UO2(CO3)3(aq), which we hypothesize has a lighter equilibrium U isotope composition than most of the charged species. According to this hypothesis, the magnitude of U isotope fractionation should scale with the fraction of dissolved U that is present as Ca2UO2(CO3)3(aq). This expectation is confirmed by equilibrium speciation modeling of our experiments. Theoretical calculation of the U isotope fractionation factors between different U species could further test this hypothesis and our proposed fractionation mechanism.These findings suggest that U isotope variations in ancient carbonates could be controlled by changes in the aqueous speciation of seawater U, particularly changes in seawater pH, PCO2, Ca2+, or Mg2+ concentrations. In general, these effects are likely to be small (<0.13‰), but are nevertheless potentially significant because of the small natural range of variation of 238U/235U.
KW - Calcium carbonate
KW - Paleoredox
KW - Speciation
KW - U isotopes
UR - http://www.scopus.com/inward/record.url?scp=84973454167&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84973454167&partnerID=8YFLogxK
U2 - 10.1016/j.gca.2016.05.022
DO - 10.1016/j.gca.2016.05.022
M3 - Article
AN - SCOPUS:84973454167
SN - 0016-7037
VL - 188
SP - 189
EP - 207
JO - Geochimica et Cosmochimica Acta
JF - Geochimica et Cosmochimica Acta
ER -