TY - JOUR
T1 - Understanding the role of water and tillage erosion from 239+240Pu tracer measurements using inverse modelling
AU - Wilken, Florian
AU - Ketterer, Michael
AU - Koszinski, Sylvia
AU - Sommer, Michael
AU - Fiener, Peter
N1 - Publisher Copyright:
© 2020 Georg Thieme Verlag. All rights reserved.
PY - 2020/11/16
Y1 - 2020/11/16
N2 - Soil redistribution on arable land is a major threat for a sustainable use of soil resources. The majority of soil redistribution studies focus on water erosion, while wind and tillage erosion also induce pronounced redistribution of soil materials. Tillage erosion especially is understudied, as it does not lead to visible off-site damages. The analysis of on-site/in-field soil redistribution is mostly based on tracer studies, where radionuclide tracers (e.g. 137Cs, 239C240Pu) from nuclear weapon tests are commonly used to derive the erosion history over the past 50-60 years. Tracer studies allow us to determine soil redistribution patterns but integrate all types of soil redistribution processes and hence do not allow us to unravel the contribution of individual erosion processes. The aim of this study is to understand the contribution of water and tillage erosion leading to soil patterns found in a small hummocky ground moraine kettle hole catchment under intensive agricultural use. Therefore, 239C240Pu-derived soil redistribution patterns were analysed using an inverse modelling approach accounting for water and tillage erosion processes. The results of this analysis clearly point out that tillage erosion is the dominant process of soil redistribution in the study catchment, which also affects the hydrological and sedimentological connectivity between arable land and the kettle hole. A topographic change up to 17 cm (53 yr)1 in the eroded parts of the catchment is not able to explain the current soil profile truncation that exceeds the 239C240Pu-derived topographic change substantially. Hence, tillage erosion already started before the onset of intense mechanisation since the 1960s. In general, the study stresses the urgent need to consider tillage erosion as a major soil degradation process that can be the dominant soil redistribution process in sloped arable landscapes.
AB - Soil redistribution on arable land is a major threat for a sustainable use of soil resources. The majority of soil redistribution studies focus on water erosion, while wind and tillage erosion also induce pronounced redistribution of soil materials. Tillage erosion especially is understudied, as it does not lead to visible off-site damages. The analysis of on-site/in-field soil redistribution is mostly based on tracer studies, where radionuclide tracers (e.g. 137Cs, 239C240Pu) from nuclear weapon tests are commonly used to derive the erosion history over the past 50-60 years. Tracer studies allow us to determine soil redistribution patterns but integrate all types of soil redistribution processes and hence do not allow us to unravel the contribution of individual erosion processes. The aim of this study is to understand the contribution of water and tillage erosion leading to soil patterns found in a small hummocky ground moraine kettle hole catchment under intensive agricultural use. Therefore, 239C240Pu-derived soil redistribution patterns were analysed using an inverse modelling approach accounting for water and tillage erosion processes. The results of this analysis clearly point out that tillage erosion is the dominant process of soil redistribution in the study catchment, which also affects the hydrological and sedimentological connectivity between arable land and the kettle hole. A topographic change up to 17 cm (53 yr)1 in the eroded parts of the catchment is not able to explain the current soil profile truncation that exceeds the 239C240Pu-derived topographic change substantially. Hence, tillage erosion already started before the onset of intense mechanisation since the 1960s. In general, the study stresses the urgent need to consider tillage erosion as a major soil degradation process that can be the dominant soil redistribution process in sloped arable landscapes.
UR - http://www.scopus.com/inward/record.url?scp=85096767888&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85096767888&partnerID=8YFLogxK
U2 - 10.5194/soil-6-549-2020
DO - 10.5194/soil-6-549-2020
M3 - Article
AN - SCOPUS:85096767888
SN - 2199-3971
VL - 6
SP - 549
EP - 564
JO - SOIL
JF - SOIL
IS - 2
ER -