TY - GEN
T1 - Towards cyber-eco systems
T2 - 2012 IEEE International Conference on Green Computing and Communications, GreenCom 2012, 2012 IEEE International Conference on Internet of Things, iThings 2012 and 5th IEEE International Conference on Cyber, Physical and Social Computing, CPSCom 2012
AU - Flikkema, Paul G.
AU - Yamamoto, Kenji R.
AU - Boegli, Samuel
AU - Porter, Christopher
AU - Heinrich, Paul
PY - 2012
Y1 - 2012
N2 - New applications are motivating and informing the design of sensor/actuator networks, and, more broadly, research in cyber-physical systems (CPS). Our knowledge of many physical systems is uncertain, so that sensing and actuation must be mediated by inference of the structure and parameters of physical-system models. One CPS application domain of growing interest is ecological systems, motivated by the need to understand plant survival and growth as a function of genetics, environment, and climate change. For this effort to be successful, we must be able to infer coupled, data-driven predictive models of plant growth dynamics in response to climate drivers that allow incorporation of uncertainty. We are developing an architecture and implementation for precise fine-scale control of irrigation in an array of geographically-distributed outdoor gardens on an elevational gradient of over 1500 m, allowing design of experiments that combine control of temperature and water availability. This paper describes a system architecture and implementation for this class of cyber-eco systems, including sensor/actuator node design, site-level networking, data assimilation, inference, and distributed control. Among its innovations are a modular, parallel-processing node hardware design allowing real-time processing and heterogeneous nodes, energy-aware hardware/software design, and a networking protocol that builds in trade-offs between energy conservation and latency. Throughout, we emphasize the changes in system architecture required as missions evolve from sensing-only to sensing, inference, and control. We also describe our developmental implementation of the architecture and its planned deployment. Future extensions will likely add negative control of precipitation using active rain-out shelters and additional plant-level control of air or soil temperature.
AB - New applications are motivating and informing the design of sensor/actuator networks, and, more broadly, research in cyber-physical systems (CPS). Our knowledge of many physical systems is uncertain, so that sensing and actuation must be mediated by inference of the structure and parameters of physical-system models. One CPS application domain of growing interest is ecological systems, motivated by the need to understand plant survival and growth as a function of genetics, environment, and climate change. For this effort to be successful, we must be able to infer coupled, data-driven predictive models of plant growth dynamics in response to climate drivers that allow incorporation of uncertainty. We are developing an architecture and implementation for precise fine-scale control of irrigation in an array of geographically-distributed outdoor gardens on an elevational gradient of over 1500 m, allowing design of experiments that combine control of temperature and water availability. This paper describes a system architecture and implementation for this class of cyber-eco systems, including sensor/actuator node design, site-level networking, data assimilation, inference, and distributed control. Among its innovations are a modular, parallel-processing node hardware design allowing real-time processing and heterogeneous nodes, energy-aware hardware/software design, and a networking protocol that builds in trade-offs between energy conservation and latency. Throughout, we emphasize the changes in system architecture required as missions evolve from sensing-only to sensing, inference, and control. We also describe our developmental implementation of the architecture and its planned deployment. Future extensions will likely add negative control of precipitation using active rain-out shelters and additional plant-level control of air or soil temperature.
KW - Cyber-eco systems
KW - Cyber-physical systems
KW - Ecological systems engineering
KW - Networks
KW - Sensor
KW - Sensor/actuator
UR - http://www.scopus.com/inward/record.url?scp=84875543449&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84875543449&partnerID=8YFLogxK
U2 - 10.1109/GreenCom.2012.61
DO - 10.1109/GreenCom.2012.61
M3 - Conference contribution
AN - SCOPUS:84875543449
SN - 9780769548654
T3 - Proceedings - 2012 IEEE Int. Conf. on Green Computing and Communications, GreenCom 2012, Conf. on Internet of Things, iThings 2012 and Conf. on Cyber, Physical and Social Computing, CPSCom 2012
SP - 372
EP - 381
BT - Proceedings - 2012 IEEE Int. Conf. on Green Computing and Communications, GreenCom 2012, Conf. on Internet of Things, iThings 2012 and Conf. on Cyber, Physical and Social Computing, CPSCom 2012
Y2 - 20 November 2012 through 23 November 2012
ER -