The origins and evolution of chromosomes, dosage compensation, and mechanisms underlying venom regulation in snakes

Drew R. Schield, Daren C. Card, Nicole R. Hales, Blair W. Perry, Giulia M. Pasquesi, Heath Blackmon, Richard H. Adams, Andrew B. Corbin, Cara F. Smith, Balan Ramesh, Jeffery P. Demuth, Esther Betrán, Marc Tollis, Jesse M. Meik, Stephen P. Mackessy, Todd A. Castoe

Research output: Contribution to journalArticlepeer-review

50 Scopus citations

Abstract

Here we use a chromosome-level genome assembly of a prairie rattlesnake (Crotalus viridis), together with Hi-C, RNA-seq, and whole-genome resequencing data, to study key features of genome biology and evolution in reptiles. We identify the rattlesnake Z Chromosome, including the recombining pseudoautosomal region, and find evidence for partial dosage compensation driven by an evolutionary accumulation of a female-biased up-regulation mechanism. Comparative analyses with other amniotes provide new insight into the origins, structure, and function of reptile microchromosomes, which we demonstrate have markedly different structure and function compared to macrochromosomes. Snake microchromosomes are also enriched for venom genes, which we show have evolved through multiple tandem duplication events in multiple gene families. By overlaying chromatin structure information and gene expression data, we find evidence for venom gene-specific chromatin contact domains and identify how chromatin structure guides precise expression of multiple venom gene families. Further, we find evidence for venom gland-specific transcription factor activity and characterize a complement of mechanisms underlying venom production and regulation. Our findings reveal novel and fundamental features of reptile genome biology, provide insight into the regulation of snake venom, and broadly highlight the biological insight enabled by chromosome-level genome assemblies.

Original languageEnglish (US)
Pages (from-to)590-601
Number of pages12
JournalGenome research
Volume29
Issue number4
DOIs
StatePublished - Apr 2019
Externally publishedYes

ASJC Scopus subject areas

  • Genetics
  • Genetics(clinical)

Fingerprint

Dive into the research topics of 'The origins and evolution of chromosomes, dosage compensation, and mechanisms underlying venom regulation in snakes'. Together they form a unique fingerprint.

Cite this