The Habitable Exoplanet Observatory (HabEx)

B. Scott Gaudi, Bertrand Mennesson, Sara Seager, Kerri Cahoy, John Clarke, Shawn Domagal-Goldman, Lee Feinberg, Olivier Guyon, Jeremy Kasdin, Christian Marois, Dimitri Mawet, Motohide Tamura, David Mouillet, Timo Prusti, Andreas Quirrenbach, Tyler Robinson, Leslie Rogers, Paul Scowen, Rachel Somerville, Karl StapelfeldtChristopher Stark, Daniel Stern, Martin Still, Margaret Turnbull, Jeffrey Booth, Alina Kiessling, Gary Kuan, Keith Warfield

Research output: Chapter in Book/Report/Conference proceedingConference contribution

4 Scopus citations

Abstract

The Habitable-Exoplanet Observatory (HabEx) is a candidate flagship mission being studied by NASA and the astrophysics community in preparation of the 2020 Decadal Survey. The first HabEx mission concept that has been studied is a large (∼4m) diffraction-limited optical space telescope, providing unprecedented resolution and contrast in the optical, with extensions into the near ulttraviolet and near infrared domains. We report here on our team's efforts in defining a scientifically compelling HabEx mission that is technologically executable, affordable within NASA's expected budgetary envelope, and timely for the next decade. We also briefly discuss our plans to explore less ambitious, descoped missions relative to the primary mission architecture discussed here.

Original languageEnglish (US)
Title of host publicationSpace Telescopes and Instrumentation 2018
Subtitle of host publicationOptical, Infrared, and Millimeter Wave
EditorsGiovanni G. Fazio, Howard A. MacEwen, Makenzie Lystrup
PublisherSPIE
ISBN (Print)9781510619494
DOIs
StatePublished - 2018
EventSpace Telescopes and Instrumentation 2018: Optical, Infrared, and Millimeter Wave - Austin, United States
Duration: Jun 10 2018Jun 15 2018

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume10698
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X

Conference

ConferenceSpace Telescopes and Instrumentation 2018: Optical, Infrared, and Millimeter Wave
Country/TerritoryUnited States
CityAustin
Period6/10/186/15/18

Keywords

  • Biosignatures
  • Coronagraph
  • Decadal
  • Exoplanets
  • Galaxy formation and evolution
  • High contrast imaging
  • Starshade

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'The Habitable Exoplanet Observatory (HabEx)'. Together they form a unique fingerprint.

Cite this