Abstract
The idea that shape and structure determines functionality is one of the leiv-motifs that drives research and applications on fields such as catalysis and plasmonics. The growth and stability of metallic clusters is extensively discussed through faceting and energy minimization mechanisms, respectively. Facet truncations on the regular Mackay-icosahedron (m-Ih) give rise to two sub-families exhibiting five-fold symmetry and external decahedral shape. Such successive truncations made to the regular m-Ih, led to a decahedral motif called 'Decmon' (Montejano's decahedron). This structure expose facets (111) and (100), that after a total energy minimization through molecular dynamics simulations using the embedded atom model, proved to be thermally stable. This result has been confirmed by using nano-thermodynamics. The surface energy competition between the (111) and (100) facets explains its stability at some given cluster sizes, and this truncation path permits to glimpse the potential energy surface in the growth path of nanoparticles from the decahedral (s-Dh) to icosahedral (m-Ih) structures.
Original language | English (US) |
---|---|
Article number | 425701 |
Journal | Nanotechnology |
Volume | 30 |
Issue number | 42 |
DOIs | |
State | Published - Aug 9 2019 |
Externally published | Yes |
Keywords
- five-fold symmetry
- growth and shape mechanisms
- nano-thermodynamics
- surface reconstructions
ASJC Scopus subject areas
- Bioengineering
- General Chemistry
- General Materials Science
- Mechanics of Materials
- Mechanical Engineering
- Electrical and Electronic Engineering