TY - JOUR
T1 - Sustainability and drivers of Populus tremuloides regeneration and recruitment near the southwestern edge of its range
AU - Crouch, Connor D.
AU - Wilhelmi, Nicholas P.
AU - Rogers, Paul C.
AU - Moore, Margaret M.
AU - Waring, Kristen M.
N1 - Publisher Copyright:
© 2025 Oxford University Press. All rights reserved.
PY - 2025/4/1
Y1 - 2025/4/1
N2 - Quaking aspen (Populus tremuloides Michx.) ecosystems are highly valued in the southwestern United States because of the ecological, economic, and aesthetic benefits they provide. Aspen has experienced extensive mortality in recent decades, and there is evidence that many areas in Arizona, United States lack adequate recruitment to replace dying overstory trees. Maintaining sustainable levels of regeneration and recruitment (i.e. juveniles) is critical for promoting aspen ecosystem resilience and adaptive capacity, but questions remain about which factors currently limit juvenile aspen and which strategies are appropriate for managing aspen in an increasingly uncertain future. To fill these critical knowledge gaps, we sampled aspen populations across Arizona and collected data representing a suite of biotic and abiotic factors that potentially influence juvenile aspen. Specifically, we addressed two questions: (i) Is aspen sustainably regenerating and recruiting in Arizona? and (2) Which biotic and abiotic factors significantly influence aspen regeneration and recruitment? We found that many aspen populations in Arizona lack sustainable levels of juvenile aspen, and the status of recruitment was especially dire, with 40% of study plots lacking a single recruiting stem. Aspen regeneration was less abundant on warmer sites than cooler ones, highlighting the threat that a rapidly warming climate poses to aspen sustainability. Aspen recruitment was significantly more abundant in areas with recent fire than in areas without fire, and recruitment had a strong positive relationship with fire severity. The most important limiting factors for aspen recruitment were ungulate browse, especially by introduced Rocky Mountain elk (Cervus canadensis nelsoni), and the invasive insect, oystershell scale (Lepidosaphes ulmi). We conclude with a discussion of how management can promote sustainability of aspen populations by addressing the array of threats that aspen faces, such as a warming climate, chronic ungulate browse, and outbreaks of oystershell scale.
AB - Quaking aspen (Populus tremuloides Michx.) ecosystems are highly valued in the southwestern United States because of the ecological, economic, and aesthetic benefits they provide. Aspen has experienced extensive mortality in recent decades, and there is evidence that many areas in Arizona, United States lack adequate recruitment to replace dying overstory trees. Maintaining sustainable levels of regeneration and recruitment (i.e. juveniles) is critical for promoting aspen ecosystem resilience and adaptive capacity, but questions remain about which factors currently limit juvenile aspen and which strategies are appropriate for managing aspen in an increasingly uncertain future. To fill these critical knowledge gaps, we sampled aspen populations across Arizona and collected data representing a suite of biotic and abiotic factors that potentially influence juvenile aspen. Specifically, we addressed two questions: (i) Is aspen sustainably regenerating and recruiting in Arizona? and (2) Which biotic and abiotic factors significantly influence aspen regeneration and recruitment? We found that many aspen populations in Arizona lack sustainable levels of juvenile aspen, and the status of recruitment was especially dire, with 40% of study plots lacking a single recruiting stem. Aspen regeneration was less abundant on warmer sites than cooler ones, highlighting the threat that a rapidly warming climate poses to aspen sustainability. Aspen recruitment was significantly more abundant in areas with recent fire than in areas without fire, and recruitment had a strong positive relationship with fire severity. The most important limiting factors for aspen recruitment were ungulate browse, especially by introduced Rocky Mountain elk (Cervus canadensis nelsoni), and the invasive insect, oystershell scale (Lepidosaphes ulmi). We conclude with a discussion of how management can promote sustainability of aspen populations by addressing the array of threats that aspen faces, such as a warming climate, chronic ungulate browse, and outbreaks of oystershell scale.
KW - fire
KW - forest health
KW - oystershell scale
KW - quaking aspen
KW - structural equation modeling
KW - ungulate exclosures
UR - http://www.scopus.com/inward/record.url?scp=86000484221&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=86000484221&partnerID=8YFLogxK
U2 - 10.1093/forestry/cpae018
DO - 10.1093/forestry/cpae018
M3 - Article
AN - SCOPUS:86000484221
SN - 0015-752X
VL - 98
SP - 148
EP - 166
JO - Forestry
JF - Forestry
IS - 2
ER -