Summer warming explains widespread but not uniform greening in the Arctic tundra biome

Logan T. Berner, Richard Massey, Patrick Jantz, Bruce C. Forbes, Marc Macias-Fauria, Isla Myers-Smith, Timo Kumpula, Gilles Gauthier, Laia Andreu-Hayles, Benjamin V. Gaglioti, Patrick Burns, Pentti Zetterberg, Rosanne D’Arrigo, Scott J. Goetz

Research output: Contribution to journalArticlepeer-review

249 Scopus citations

Abstract

Arctic warming can influence tundra ecosystem function with consequences for climate feedbacks, wildlife and human communities. Yet ecological change across the Arctic tundra biome remains poorly quantified due to field measurement limitations and reliance on coarse-resolution satellite data. Here, we assess decadal changes in Arctic tundra greenness using time series from the 30 m resolution Landsat satellites. From 1985 to 2016 tundra greenness increased (greening) at ~37.3% of sampling sites and decreased (browning) at ~4.7% of sampling sites. Greening occurred most often at warm sampling sites with increased summer air temperature, soil temperature, and soil moisture, while browning occurred most often at cold sampling sites that cooled and dried. Tundra greenness was positively correlated with graminoid, shrub, and ecosystem productivity measured at field sites. Our results support the hypothesis that summer warming stimulated plant productivity across much, but not all, of the Arctic tundra biome during recent decades.

Original languageEnglish (US)
Article number4621
JournalNature Communications
Volume11
Issue number1
DOIs
StatePublished - Dec 1 2020
Externally publishedYes

ASJC Scopus subject areas

  • General Chemistry
  • General Biochemistry, Genetics and Molecular Biology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Summer warming explains widespread but not uniform greening in the Arctic tundra biome'. Together they form a unique fingerprint.

Cite this