TY - JOUR
T1 - Sulfur Hazes in Giant Exoplanet Atmospheres
T2 - Impacts on Reflected Light Spectra
AU - Gao, Peter
AU - Marley, Mark S.
AU - Zahnle, Kevin
AU - Robinson, Tyler D.
AU - Lewis, Nikole K.
N1 - Publisher Copyright:
© 2017. The American Astronomical Society. All rights reserved..
PY - 2017/3
Y1 - 2017/3
N2 - Recent work has shown that sulfur hazes may arise in the atmospheres of some giant exoplanets, due to the photolysis of H2S. We investigate the impact such a haze would have on an exoplanet's geometric albedo spectrum and how it may affect the direct imaging results of the Wide Field Infrared Survey Telescope (WFIRST), a planned NASA space telescope. For temperate (250 K < T eq < 700 K) Jupiter-mass planets, photochemical destruction of H2S results in the production of ∼1 ppmv of S8 between 100 and 0.1 mbar, which, if cool enough, will condense to form a haze. Nominal haze masses are found to drastically alter a planet's geometric albedo spectrum: whereas a clear atmosphere is dark at wavelengths between 0.5 and 1 μm, due to molecular absorption, the addition of a sulfur haze boosts the albedo there to ∼0.7, due to scattering. Strong absorption by the haze shortward of 0.4 μm results in albedos <0.1, in contrast to the high albedos produced by Rayleigh scattering in a clear atmosphere. As a result, the color of the planet shifts from blue to orange. The existence of a sulfur haze masks the molecular signatures of methane and water, thereby complicating the characterization of atmospheric composition. Detection of such a haze by WFIRST is possible, though discriminating between a sulfur haze and any other highly reflective, high-altitude scatterer will require observations shortward of 0.4 μm, which is currently beyond WFIRST's design.
AB - Recent work has shown that sulfur hazes may arise in the atmospheres of some giant exoplanets, due to the photolysis of H2S. We investigate the impact such a haze would have on an exoplanet's geometric albedo spectrum and how it may affect the direct imaging results of the Wide Field Infrared Survey Telescope (WFIRST), a planned NASA space telescope. For temperate (250 K < T eq < 700 K) Jupiter-mass planets, photochemical destruction of H2S results in the production of ∼1 ppmv of S8 between 100 and 0.1 mbar, which, if cool enough, will condense to form a haze. Nominal haze masses are found to drastically alter a planet's geometric albedo spectrum: whereas a clear atmosphere is dark at wavelengths between 0.5 and 1 μm, due to molecular absorption, the addition of a sulfur haze boosts the albedo there to ∼0.7, due to scattering. Strong absorption by the haze shortward of 0.4 μm results in albedos <0.1, in contrast to the high albedos produced by Rayleigh scattering in a clear atmosphere. As a result, the color of the planet shifts from blue to orange. The existence of a sulfur haze masks the molecular signatures of methane and water, thereby complicating the characterization of atmospheric composition. Detection of such a haze by WFIRST is possible, though discriminating between a sulfur haze and any other highly reflective, high-altitude scatterer will require observations shortward of 0.4 μm, which is currently beyond WFIRST's design.
KW - planets and satellites: atmospheres
UR - http://www.scopus.com/inward/record.url?scp=85015253789&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85015253789&partnerID=8YFLogxK
U2 - 10.3847/1538-3881/aa5fab
DO - 10.3847/1538-3881/aa5fab
M3 - Article
AN - SCOPUS:85015253789
SN - 0004-6256
VL - 153
JO - Astronomical Journal
JF - Astronomical Journal
IS - 3
M1 - 139
ER -