TY - JOUR
T1 - Spectral evidence for a pyroclastic mantle over the Tacquet formation and Menelaus domes of southwest Mare Serenitatis
AU - Farrand, William H.
AU - Edwards, Christopher S.
AU - Udovicic, Christian Tai
N1 - Publisher Copyright:
© 2022 Elsevier Inc.
PY - 2022/8
Y1 - 2022/8
N2 - The Tacquet Formation (TF) was first identified in geologic mapping of southern Mare Serenitatis as a distinct low albedo region split by the linear Rimae Menelaus rilles. A distinct western dome, split by a linear rille and less distinct eastern dome (the Menelaus domes) are also present within the TF. Previous Earth-based radar analyses showed that the TF has a lower circular polarization ratio consistent with a pyroclastic mantle. In this study, compositional and spectroscopic parameters were derived from Moon Mineralogy Mapper (M3) data. Lunar Reconnaissance Orbiter Camera Wide Angle Camera (LROC WAC) and SELENE Kaguya Multiband Imager (MI) multispectral data were also utilized. FeO derived from MI data for the TF and Menelaus domes was elevated at levels consistent with pyroclastic glasses. While not diagnostic of pyroclastics, TiO2 derived from LROC WAC data over the TF and Menelaus domes was also elevated relative to the background materials. Analysis of 1 and 2 μm band parameters also show the TF and Menelaus domes as being distinct with a band center moderately longer than 1 μm and 2 μm band center shorter than the surroundings, characteristics consistent with pyroclastic glass and/or increased ilmenite. M3 data thermally corrected via two different thermal correction approaches indicate a moderately deeper band in the 3 μm region indicative of OH and/or H2O, a characteristic that is also potentially associated with pyroclastic deposits. These compositional findings are consistent with the Earth-based radar data suggesting that the TF is a pyroclastic mantle and potentially represents a previously unrecognized sub-class of pyroclastic deposits associated with lunar volcanic domes.
AB - The Tacquet Formation (TF) was first identified in geologic mapping of southern Mare Serenitatis as a distinct low albedo region split by the linear Rimae Menelaus rilles. A distinct western dome, split by a linear rille and less distinct eastern dome (the Menelaus domes) are also present within the TF. Previous Earth-based radar analyses showed that the TF has a lower circular polarization ratio consistent with a pyroclastic mantle. In this study, compositional and spectroscopic parameters were derived from Moon Mineralogy Mapper (M3) data. Lunar Reconnaissance Orbiter Camera Wide Angle Camera (LROC WAC) and SELENE Kaguya Multiband Imager (MI) multispectral data were also utilized. FeO derived from MI data for the TF and Menelaus domes was elevated at levels consistent with pyroclastic glasses. While not diagnostic of pyroclastics, TiO2 derived from LROC WAC data over the TF and Menelaus domes was also elevated relative to the background materials. Analysis of 1 and 2 μm band parameters also show the TF and Menelaus domes as being distinct with a band center moderately longer than 1 μm and 2 μm band center shorter than the surroundings, characteristics consistent with pyroclastic glass and/or increased ilmenite. M3 data thermally corrected via two different thermal correction approaches indicate a moderately deeper band in the 3 μm region indicative of OH and/or H2O, a characteristic that is also potentially associated with pyroclastic deposits. These compositional findings are consistent with the Earth-based radar data suggesting that the TF is a pyroclastic mantle and potentially represents a previously unrecognized sub-class of pyroclastic deposits associated with lunar volcanic domes.
KW - Lunar pyroclastic deposits
KW - Lunar volcanism
KW - Reflectance spectroscopy
UR - http://www.scopus.com/inward/record.url?scp=85128553170&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85128553170&partnerID=8YFLogxK
U2 - 10.1016/j.icarus.2022.115021
DO - 10.1016/j.icarus.2022.115021
M3 - Article
AN - SCOPUS:85128553170
SN - 0019-1035
VL - 382
JO - Icarus
JF - Icarus
M1 - 115021
ER -