Spatial relationships of sector-specific fossil fuel CO 2 emissions in the United States

Research output: Contribution to journalArticlepeer-review

23 Scopus citations


Quantification of the spatial distribution of sector-specific fossil fuel CO 2 emissions provides strategic information to public and private decision makers on climate change mitigation options and can provide critical constraints to carbon budget studies being performed at the national to urban scales. This study analyzes the spatial distribution and spatial drivers of total and sectoral fossil fuel CO 2 emissions at the state and county levels in the United States. The spatial patterns of absolute versus per capita fossil fuel CO 2 emissions differ substantially and these differences are sector-specific. Area-based sources such as those in the residential and commercial sectors are driven by a combination of population and surface temperature with per capita emissions largest in the northern latitudes and continental interior. Emission sources associated with large individual manufacturing or electricity producing facilities are heterogeneously distributed in both absolute and per capita metrics. The relationship between surface temperature and sectoral emissions suggests that the increased electricity consumption due to space cooling requirements under a warmer climate may outweigh the savings generated by lessened space heating. Spatial cluster analysis of fossil fuel CO 2 emissions confirms that counties with high (low) CO 2 emissions tend to be clustered close to other counties with high (low) CO 2 emissions and some of the spatial clustering extends to multistate spatial domains. This is particularly true for the residential and transportation sectors, suggesting that emissions mitigation policy might best be approached from the regional or multistate perspective. Our findings underscore the potential for geographically focused, sector-specific emissions mitigation strategies and the importance of accurate spatial distribution of emitting sources when combined with atmospheric monitoring via aircraft, satellite and in situ measurements.

Original languageEnglish (US)
Article numberGB3002
JournalGlobal Biogeochemical Cycles
Issue number3
StatePublished - 2011
Externally publishedYes

ASJC Scopus subject areas

  • Global and Planetary Change
  • Environmental Chemistry
  • General Environmental Science
  • Atmospheric Science


Dive into the research topics of 'Spatial relationships of sector-specific fossil fuel CO 2 emissions in the United States'. Together they form a unique fingerprint.

Cite this