TY - JOUR
T1 - Soil properties associated with vegetation patches in a Pinus ponderosa-bunchgrass mosaic
AU - Kerns, Becky K.
AU - Moore, Margaret M.
AU - Timpson, Michael E.
AU - Hart, Stephen C.
N1 - Copyright:
Copyright 2008 Elsevier B.V., All rights reserved.
PY - 2003/10
Y1 - 2003/10
N2 - Since Euro-American settlement, fire exclusion and other factors have dramatically altered interior western coniferous forests. Once open and parklike, present-day structure in many southwestern Pinus ponderosa forests consists of dense stands of young, small-diameter trees, with small patches of larger, old trees, and relict open bunchgrass areas. Our objectives were to assess differences in soil properties associated with these different vegetation patches. We examined soil morphological characteristics, pH, organic C concentration, total N concentration, C:N ratio, and phytolith concentration from profiles within 6 transects (18 soil pedons) crossing patches of dense stands of small-diameter trees, patchs of old-growth trees, and open grassy areas. Results indicate that old-growth plots had significantly lower A horizon pH and thicker O horizons than grass plots. In general, we found vegetation patches had statistically similar C and N concentrations and C:N ratios for A and B horizons; however, C in the A horizon was positively correlated with O horizon accumulation (r2 = 0.79). Greater accumulation of organic C in the A horizon of forested areas contrasts with commonly reported results from mesic, mid-continental prairie-forest ecosystems but is typical for many arid, semiarid, and humid savanna ecosystems. Phytolith concentration was similar among old-growth pine, dense younger pine, and open grassy plots; the lack of a spatial pattern in phytolith distribution could indicate that grass cover was more spatially continuous in the past. Additionally, this interpretation is consistent with current theories regarding historical vegetation change in these forests.
AB - Since Euro-American settlement, fire exclusion and other factors have dramatically altered interior western coniferous forests. Once open and parklike, present-day structure in many southwestern Pinus ponderosa forests consists of dense stands of young, small-diameter trees, with small patches of larger, old trees, and relict open bunchgrass areas. Our objectives were to assess differences in soil properties associated with these different vegetation patches. We examined soil morphological characteristics, pH, organic C concentration, total N concentration, C:N ratio, and phytolith concentration from profiles within 6 transects (18 soil pedons) crossing patches of dense stands of small-diameter trees, patchs of old-growth trees, and open grassy areas. Results indicate that old-growth plots had significantly lower A horizon pH and thicker O horizons than grass plots. In general, we found vegetation patches had statistically similar C and N concentrations and C:N ratios for A and B horizons; however, C in the A horizon was positively correlated with O horizon accumulation (r2 = 0.79). Greater accumulation of organic C in the A horizon of forested areas contrasts with commonly reported results from mesic, mid-continental prairie-forest ecosystems but is typical for many arid, semiarid, and humid savanna ecosystems. Phytolith concentration was similar among old-growth pine, dense younger pine, and open grassy plots; the lack of a spatial pattern in phytolith distribution could indicate that grass cover was more spatially continuous in the past. Additionally, this interpretation is consistent with current theories regarding historical vegetation change in these forests.
KW - Biosequence
KW - Forest soils
KW - Grassland soils
KW - Nonmetric multidimensional scaling
KW - Phytoliths
UR - http://www.scopus.com/inward/record.url?scp=0346269084&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0346269084&partnerID=8YFLogxK
M3 - Article
AN - SCOPUS:0346269084
SN - 1527-0904
VL - 63
SP - 452
EP - 462
JO - Western North American Naturalist
JF - Western North American Naturalist
IS - 4
ER -