SiCxNy-based resistive and threshold switching by using single precursor plasma-enhanced atomic layer deposition

Yu Lin Hsu, Yao Feng Chang, Wei Min Chung, Ying Chen Chen, Chao Cheng Lin, Jihperng Leu

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Abstract

In this work, SiCxNy-based resistive switching memory by using a single precursor for the back end of line (BEOL) integration has been investigated. SiCxNy films were deposited on the aluminum (Al) substrates using plasma enhanced atomic layer deposition (PEALD) method. The effects of SiCxNy chemical structure with respect to resistive switching characteristics have been studied, and the results suggest that the resistive switching mechanism is dominated by the interfacial Schottky junction with SiCxNy composition. This work not only demonstrates a PEALD method in fabricating SiCxNy-based electronics active devices but also provides additional insights into the interaction between the electrical and chemical structures in bi-functional resistive switching or threshold switching behavior. A demonstrated PEALD tool with simple single-precursor for SiCxNy deposition shows excellent feasibility to be used as functional memory and selector devices, further giving the potential pathway for advanced BEOL process integration.

Original languageEnglish (US)
Article number213502
JournalApplied Physics Letters
Volume116
Issue number21
DOIs
StatePublished - May 26 2020

ASJC Scopus subject areas

  • Physics and Astronomy (miscellaneous)

Fingerprint

Dive into the research topics of 'SiCxNy-based resistive and threshold switching by using single precursor plasma-enhanced atomic layer deposition'. Together they form a unique fingerprint.

Cite this