Seismic velocity structure and depth-dependence of anisotropy in the Red Sea and Arabian shield from surface wave analysis

Samantha E. Hansen, James B. Gaherty, Susan Y. Schwartz, Arthur J. Rodgers, Abdullah M.S. Al-Amri

Research output: Contribution to journalArticlepeer-review

18 Scopus citations

Abstract

We investigate the lithospheric and upper mantle shear wave velocity structure and the depth-dependence of anisotropy along the Red Sea and beneath the Arabian Peninsula using receiver function constraints and phase velocities of surface waves traversing two transects of stations from the Saudi Arabian National Digital Seismic Network. Frequency-dependent phase delays of fundamental-mode Love and Rayleigh waves, measured using a cross-correlation procedure, require very slow shear velocities and the presence of anisotropy to depths of at least 180 km in the upper mantle. Linearized inversion of these data produce path-averaged ID radially anisotropic models with ∼4% anisotropy in the lithosphere and across the lithosphere-asthenosphere boundary (LAB). Models with reasonable crustal velocities in which the mantle lithosphere is isotropic cannot satisfy the data. The lithosphere, which ranges in thickness from about 70 km near the Red Sea coast to about 90 km beneath the Arabian Shield, is underlain by a pronounced low-velocity zone with shear velocities as low as 4.1 km/s. Forward models of azimuthal anisotropy, which are constructed from previously determined shear wave splitting estimates, can reconcile surface and body wave observations of anisotropy. The low shear velocities extend to greater depth than those observed in other continental rift and oceanic ridge environments. The depth extent of these low velocities combined with the sharp velocity contrast across the LAB may indicate the influence of the Afar hot spot and the presence of partial melt beneath Arabia. The anisotropic signature primarily reflects a combination of plate- and density-driven flow associated with rifting proces ses in the Red Sea.

Original languageEnglish (US)
Article numberB10307
JournalJournal of Geophysical Research: Solid Earth
Volume113
Issue number10
DOIs
StatePublished - Oct 4 2008
Externally publishedYes

ASJC Scopus subject areas

  • Geophysics
  • Geochemistry and Petrology
  • Space and Planetary Science
  • Earth and Planetary Sciences (miscellaneous)

Fingerprint

Dive into the research topics of 'Seismic velocity structure and depth-dependence of anisotropy in the Red Sea and Arabian shield from surface wave analysis'. Together they form a unique fingerprint.

Cite this