Relationship between assistive torque and knee biomechanics during exoskeleton walking in individuals with crouch gait

Zachary F. Lerner, Diane L. Damiano, Thomas C. Bulea

Research output: Chapter in Book/Report/Conference proceedingConference contribution

15 Scopus citations

Abstract

Crouch or 'flexed knee' gait is a pathological gait pattern affecting many individuals with cerebral palsy. One proposed method to alleviate crouch is to provide robotic assistance to knee extension during walking. The purpose of this study was to evaluate how the magnitude of knee extensor torque affects knee kinematics, kinetics, and muscle activity. Motion capture, ground reaction force and electromyography data were collected while four participants with crouch gait from cerebral palsy walked with assistance from a novel robotic exoskeleton on an instrumented treadmill. Different magnitudes of knee extensor torque were provided during the stance (range: 0.09-0.38 Nm/kg) and swing (range: 0.09-0.29 Nm/kg) phases of the gait cycle. Using a linear regression analysis, we found that greater torque from the exoskeleton was positively associated with increased knee extension (reduction in crouch) at foot contact and mid-stance, negatively associated with the biological knee extensor moment, and positively associated with knee flexor muscle activity. Determining the relationships between exoskeleton assistance and knee kinematics and kinetics will benefit the continued investigation of robotic treatment strategies for treating crouch gait. Our findings indicate the importance of properly tuned robotic control strategies for gait rehabilitation.

Original languageEnglish (US)
Title of host publication2017 International Conference on Rehabilitation Robotics, ICORR 2017
EditorsArash Ajoudani, Panagiotis Artemiadis, Philipp Beckerle, Giorgio Grioli, Olivier Lambercy, Katja Mombaur, Domen Novak, Georg Rauter, Carlos Rodriguez Guerrero, Gionata Salvietti, Farshid Amirabdollahian, Sivakumar Balasubramanian, Claudio Castellini, Giovanni Di Pino, Zhao Guo, Charmayne Hughes, Fumiya Iida, Tommaso Lenzi, Emanuele Ruffaldi, Fabrizio Sergi, Gim Song Soh, Marco Caimmi, Leonardo Cappello, Raffaella Carloni, Tom Carlson, Maura Casadio, Martina Coscia, Dalia De Santis, Arturo Forner-Cordero, Matthew Howard, Davide Piovesan, Adriano Siqueira, Frank Sup, Masia Lorenzo, Manuel Giuseppe Catalano, Hyunglae Lee, Carlo Menon, Stanisa Raspopovic, Mo Rastgaar, Renaud Ronsse, Edwin van Asseldonk, Bram Vanderborght, Madhusudhan Venkadesan, Matteo Bianchi, David Braun, Sasha Blue Godfrey, Fulvio Mastrogiovanni, Andrew McDaid, Stefano Rossi, Jacopo Zenzeri, Domenico Formica, Nikolaos Karavas, Laura Marchal-Crespo, Kyle B. Reed, Nevio Luigi Tagliamonte, Etienne Burdet, Angelo Basteris, Domenico Campolo, Ashish Deshpande, Venketesh Dubey, Asif Hussain, Vittorio Sanguineti, Ramazan Unal, Glauco Augusto de Paula Caurin, Yasuharu Koike, Stefano Mazzoleni, Hyung-Soon Park, C. David Remy, Ludovic Saint-Bauzel, Nikos Tsagarakis, Jan Veneman, Wenlong Zhang
PublisherIEEE Computer Society
Pages492-497
Number of pages6
ISBN (Electronic)9781538622964
DOIs
StatePublished - Aug 11 2017
Event2017 International Conference on Rehabilitation Robotics, ICORR 2017 - London, United Kingdom
Duration: Jul 17 2017Jul 20 2017

Publication series

NameIEEE International Conference on Rehabilitation Robotics
ISSN (Print)1945-7898
ISSN (Electronic)1945-7901

Conference

Conference2017 International Conference on Rehabilitation Robotics, ICORR 2017
Country/TerritoryUnited Kingdom
CityLondon
Period7/17/177/20/17

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Rehabilitation
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Relationship between assistive torque and knee biomechanics during exoskeleton walking in individuals with crouch gait'. Together they form a unique fingerprint.

Cite this