Redefinition and global estimation of basal ecosystem respiration rate

Wenping Yuan, Yiqi Luo, Xianglan Li, Shuguang Liu, Guirui Yu, Tao Zhou, Michael Bahn, Andy Black, Ankur R. Desai, Alessandro Cescatti, Barbara Marcolla, Cor Jacobs, Jiquan Chen, Mika Aurela, Christian Bernhofer, Bert Gielen, Gil Bohrer, David R. Cook, Danilo Dragoni, Allison L. DunnDamiano Gianelle, Thomas Grnwald, Andreas Ibrom, Monique Y. Leclerc, Anders Lindroth, Heping Liu, Luca Belelli Marchesini, Leonardo Montagnani, Gabriel Pita, Mirco Rodeghiero, Abel Rodrigues, Gregory Starr, Paul C. Stoy

Research output: Contribution to journalArticlepeer-review

54 Scopus citations

Abstract

Basal ecosystem respiration rate (BR), the ecosystem respiration rate at a given temperature, is a common and important parameter in empirical models for quantifying ecosystem respiration (ER) globally. Numerous studies have indicated that BR varies in space. However, many empirical ER models still use a global constant BR largely due to the lack of a functional description for BR. In this study, we redefined BR to be ecosystem respiration rate at the mean annual temperature. To test the validity of this concept, we conducted a synthesis analysis using 276 site-years of eddy covariance data, from 79 research sites located at latitudes ranging from ∼3S to ∼70N. Results showed that mean annual ER rate closely matches ER rate at mean annual temperature. Incorporation of site-specific BR into global ER model substantially improved simulated ER compared to an invariant BR at all sites. These results confirm that ER at the mean annual temperature can be considered as BR in empirical models. A strong correlation was found between the mean annual ER and mean annual gross primary production (GPP). Consequently, GPP, which is typically more accurately modeled, can be used to estimate BR. A light use efficiency GPP model (i.e., EC-LUE) was applied to estimate global GPP, BR and ER with input data from MERRA (Modern Era Retrospective-Analysis for Research and Applications) and MODIS (Moderate resolution Imaging Spectroradiometer). The global ER was 103 Pg C yr -1, with the highest respiration rate over tropical forests and the lowest value in dry and high-latitude areas.

Original languageEnglish (US)
Article numberGB4002
JournalGlobal Biogeochemical Cycles
Volume25
Issue number4
DOIs
StatePublished - 2011
Externally publishedYes

ASJC Scopus subject areas

  • Global and Planetary Change
  • Environmental Chemistry
  • General Environmental Science
  • Atmospheric Science

Fingerprint

Dive into the research topics of 'Redefinition and global estimation of basal ecosystem respiration rate'. Together they form a unique fingerprint.

Cite this