Abstract
Foundation species have disproportionately large impacts on ecosystem structure and function. As a result, future changes to their distribution may be important determinants of ecosystem carbon (C) cycling in a warmer world. We assessed the role of a foundation tussock sedge (Eriophorum vaginatum) as a climatically vulnerable C stock using field data, a machine learning ecological niche model, and an ensemble of terrestrial biosphere models (TBMs). Field data indicated that tussock density has decreased by 1/40.97 tussocks per m2 over the past 1/438 years on Alaska's North Slope from 1/41981 to 2019. This declining trend is concerning because tussocks are a large Arctic C stock, which enhances soil organic layer C stocks by 6.9% on average and represents 745 Tg C across our study area. By 2100, we project that changes in tussock density may decrease the tussock C stock by 41% in regions where tussocks are currently abundant (e.g. -0.8 tussocks per m2 and -85 Tg C on the North Slope) and may increase the tussock C stock by 46% in regions where tussocks are currently scarce (e.g. +0.9 tussocks per m2 and +81 Tg C on Victoria Island). These climate-induced changes to the tussock C stock were comparable to, but sometimes opposite in sign, to vegetation C stock changes predicted by an ensemble of TBMs. Our results illustrate the important role of tussocks as a foundation species in determining future Arctic C stocks and highlight the need for better representation of this species in TBMs.
Original language | English (US) |
---|---|
Article number | 045024 |
Journal | Environmental Research Letters |
Volume | 17 |
Issue number | 4 |
DOIs | |
State | Published - 2022 |
Keywords
- Arctic
- Eriophorum vaginatum
- carbon cycle
- carbon stocks
- climate change
- tundra
ASJC Scopus subject areas
- Renewable Energy, Sustainability and the Environment
- General Environmental Science
- Public Health, Environmental and Occupational Health