Predicting spring phenology in deciduous broadleaf forests: NEON phenology forecasting community challenge

Kathryn I. Wheeler, Michael C. Dietze, David LeBauer, Jody A. Peters, Andrew D. Richardson, Arun A. Ross, R. Quinn Thomas, Kai Zhu, Uttam Bhat, Stephan Munch, Raphaela Floreani Buzbee, Min Chen, Benjamin Goldstein, Jessica Guo, Dalei Hao, Chris Jones, Mira Kelly-Fair, Haoran Liu, Charlotte Malmborg, Naresh NeupaneDebasmita Pal, Vaughn Shirey, Yiluan Song, McKalee Steen, Eric A. Vance, Whitney M. Woelmer, Jacob H. Wynne, Luke Zachmann

Research output: Contribution to journalArticlepeer-review

1 Scopus citations


Accurate models are important to predict how global climate change will continue to alter plant phenology and near-term ecological forecasts can be used to iteratively improve models and evaluate predictions that are made a priori. The Ecological Forecasting Initiative's National Ecological Observatory Network (NEON) Forecasting Challenge, is an open challenge to the community to forecast daily greenness values, measured through digital images collected by the PhenoCam Network at NEON sites before the data are collected. For the first round of the challenge, which is presented here, we forecasted canopy greenness throughout the spring at eight deciduous broadleaf sites to investigate when, where, and for what model type phenology forecast skill is highest. A total of 192,536 predictions were submitted, representing eighteen models, including a persistence and a day of year mean null models. We found that overall forecast skill was highest when forecasting earlier in the greenup curve compared to the end, for shorter lead times, for sites that greened up earlier, and when submitting forecasts during times other than near budburst. The models based on day of year historical mean had the highest predictive skill across the challenge period. In this first round of the challenge, by synthesizing across forecasts, we started to elucidate what factors affect the predictive skill of near-term phenology forecasts.

Original languageEnglish (US)
Article number109810
JournalAgricultural and Forest Meteorology
StatePublished - Feb 15 2024


  • Budburst
  • Community challenge
  • Deciduous broadleaf
  • Ecological forecasting
  • Forests
  • Phenology

ASJC Scopus subject areas

  • Forestry
  • Global and Planetary Change
  • Agronomy and Crop Science
  • Atmospheric Science


Dive into the research topics of 'Predicting spring phenology in deciduous broadleaf forests: NEON phenology forecasting community challenge'. Together they form a unique fingerprint.

Cite this