TY - GEN
T1 - PRACTICAL EXPERIENCE WITH A MOBILE METHANOL SYNTHESIS DEVICE
AU - Morgan, Eric R.
AU - Acker, Tom
N1 - Publisher Copyright:
© 2014 by ASME.
PY - 2014
Y1 - 2014
N2 - Northern Arizona University has developed a methanol synthesis unit that directly converts carbon dioxide and hydrogen into methanol and water. The methanol synthesis unit consists of: a high pressure side that includes a compressor, a reactor, and a throttling valve; and a low pressure side that includes a knockout drum, and a mixer where fresh gas enters the system. Methanol and water are produced at high pressure in the reactor and then exit the system under low pressure and temperature in the knockout drum. The remaining, unreacted recycle gas that leaves the knockout drum is mixed with fresh synthesis gas before being sent back through the synthesis loop. The unit operates entirely on electricity and includes a high-pressure electrolyzer to obtain gaseous hydrogen and oxygen directly from purified water. Thus, the sole inputs to the trailer are water, carbon dioxide and electricity, while the sole outputs are methanol, oxygen, and water. A distillation unit separates the methanol and water mixture on site so that the synthesized water can be reused in the electrolyzer. Here, we describe and characterize the operation of the methanol synthesis unit and offer some possible design improvements for future iterations of the device, based on experience.
AB - Northern Arizona University has developed a methanol synthesis unit that directly converts carbon dioxide and hydrogen into methanol and water. The methanol synthesis unit consists of: a high pressure side that includes a compressor, a reactor, and a throttling valve; and a low pressure side that includes a knockout drum, and a mixer where fresh gas enters the system. Methanol and water are produced at high pressure in the reactor and then exit the system under low pressure and temperature in the knockout drum. The remaining, unreacted recycle gas that leaves the knockout drum is mixed with fresh synthesis gas before being sent back through the synthesis loop. The unit operates entirely on electricity and includes a high-pressure electrolyzer to obtain gaseous hydrogen and oxygen directly from purified water. Thus, the sole inputs to the trailer are water, carbon dioxide and electricity, while the sole outputs are methanol, oxygen, and water. A distillation unit separates the methanol and water mixture on site so that the synthesized water can be reused in the electrolyzer. Here, we describe and characterize the operation of the methanol synthesis unit and offer some possible design improvements for future iterations of the device, based on experience.
UR - http://www.scopus.com/inward/record.url?scp=84949637908&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84949637908&partnerID=8YFLogxK
U2 - 10.1115/ES2014-6747
DO - 10.1115/ES2014-6747
M3 - Conference contribution
AN - SCOPUS:84949637908
T3 - ASME 2014 8th International Conference on Energy Sustainability, ES 2014 Collocated with the ASME 2014 12th International Conference on Fuel Cell Science, Engineering and Technology
BT - ASME 2014 8th International Conference on Energy Sustainability, ES 2014 Collocated with the ASME 2014 12th International Conference on Fuel Cell Science, Engineering and Technology
PB - American Society of Mechanical Engineers
T2 - ASME 2014 8th International Conference on Energy Sustainability, ES 2014 Collocated with the ASME 2014 12th International Conference on Fuel Cell Science, Engineering and Technology
Y2 - 30 June 2014 through 2 July 2014
ER -