Policy-relevant assessment of urban CO2emissions

Thomas Lauvaux, Kevin R. Gurney, Natasha L. Miles, Kenneth J. Davis, Scott J. Richardson, Aijun Deng, Brian J. Nathan, Tomohiro Oda, Jonathan A. Wang, Lucy Hutyra, Jocelyn Turnbull

Research output: Contribution to journalArticlepeer-review

58 Scopus citations

Abstract

Global fossil fuel carbon dioxide (FFCO2) emissions will be dictated to a great degree by the trajectory of emissions from urban areas. Conventional methods to quantify urban FFCO2 emissions typically rely on self-reported economic/energy activity data transformed into emissions via standard emission factors. However, uncertainties in these traditional methods pose a roadblock to implementation of effective mitigation strategies, independently monitor long-term trends, and assess policy outcomes. Here, we demonstrate the applicability of the integration of a dense network of greenhouse gas sensors with a science-driven building and street-scale FFCO2 emissions estimation through the atmospheric CO2 inversion process. Whole-city FFCO2 emissions agree within 3% annually. Current self-reported inventory emissions for the city of Indianapolis are 35% lower than our optimal estimate, with significant differences across activity sectors. Differences remain, however, regarding the spatial distribution of sectoral FFCO2 emissions, underconstrained despite the inclusion of coemitted species information.

Original languageEnglish (US)
Pages (from-to)10237-10245
Number of pages9
JournalEnvironmental Science and Technology
Volume54
Issue number16
DOIs
StatePublished - Aug 18 2020
Externally publishedYes

ASJC Scopus subject areas

  • General Chemistry
  • Environmental Chemistry

Fingerprint

Dive into the research topics of 'Policy-relevant assessment of urban CO2emissions'. Together they form a unique fingerprint.

Cite this