TY - JOUR
T1 - Oxygen diffusing capacity estimates derived from measured V̇A/Q̇ distributions in man
AU - Hammond, M. D.
AU - Hempleman, S. C.
PY - 1987/8
Y1 - 1987/8
N2 - Data from eighteen subjects, studied in hypoxia (minimum PIO2 = 80 Torr) both at rest and during exercise, were analyzed using computer models which estimate O2 diffusing capacity from measured V̇A/Q̇ distributions (obtained using the multiple inert gas elimination technique 'MIGET') and measured O2 exchange. Two of these models assigned the distribution of the diffusing capacity (D) in proportion to either the perfusion (DLO2-Vwt) distributions from MIGET, and thus modeled the effects of V̇A/Q̇ and D/Q̇β(where Q̇β is the perfusive conductance inequalities respectively. The third model (DLO2-3C) assigned all the diffusing capacity to a single homogeneous compartment. At rest DLO2 was 41.1 ± 41.4 ± 5.4 and 30.2 ± 2.1 ml · min-1 · Torr-1 for the Qwt, Vwt and 3C models respectively. These rose to 93.7 ± 2.6, 109.3 ± 4.5 and 81.1 ± 1.9 ml · min-1 · Torr-1 respectively at maximal exercise, all significantly different from rest (P < 0.001 for each). The effects of measured V̇A/Q̇ and theoretical D/Q̇β inhomogeneities on diffusing capacity estimates were significant even in normal lungs. Both types of inequality caused an appreciable underestimation of DLO2. These multi-compartment model estimates, using real data, are consistent with published theoretical predictions of the effects of V̇, Q̇ and D inequalities. These results during exercise come close to morphometric predictions of maximal oxygen diffusing capacity in man.
AB - Data from eighteen subjects, studied in hypoxia (minimum PIO2 = 80 Torr) both at rest and during exercise, were analyzed using computer models which estimate O2 diffusing capacity from measured V̇A/Q̇ distributions (obtained using the multiple inert gas elimination technique 'MIGET') and measured O2 exchange. Two of these models assigned the distribution of the diffusing capacity (D) in proportion to either the perfusion (DLO2-Vwt) distributions from MIGET, and thus modeled the effects of V̇A/Q̇ and D/Q̇β(where Q̇β is the perfusive conductance inequalities respectively. The third model (DLO2-3C) assigned all the diffusing capacity to a single homogeneous compartment. At rest DLO2 was 41.1 ± 41.4 ± 5.4 and 30.2 ± 2.1 ml · min-1 · Torr-1 for the Qwt, Vwt and 3C models respectively. These rose to 93.7 ± 2.6, 109.3 ± 4.5 and 81.1 ± 1.9 ml · min-1 · Torr-1 respectively at maximal exercise, all significantly different from rest (P < 0.001 for each). The effects of measured V̇A/Q̇ and theoretical D/Q̇β inhomogeneities on diffusing capacity estimates were significant even in normal lungs. Both types of inequality caused an appreciable underestimation of DLO2. These multi-compartment model estimates, using real data, are consistent with published theoretical predictions of the effects of V̇, Q̇ and D inequalities. These results during exercise come close to morphometric predictions of maximal oxygen diffusing capacity in man.
KW - Exercise
KW - Hypoxia
KW - Inert gases
KW - Lung models
KW - Pulmonary gas exchange
UR - http://www.scopus.com/inward/record.url?scp=0023244597&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0023244597&partnerID=8YFLogxK
U2 - 10.1016/0034-5687(87)90022-3
DO - 10.1016/0034-5687(87)90022-3
M3 - Article
C2 - 3114851
AN - SCOPUS:0023244597
SN - 1569-9048
VL - 69
SP - 129
EP - 147
JO - Respiratory Physiology and Neurobiology
JF - Respiratory Physiology and Neurobiology
IS - 2
ER -