TY - JOUR
T1 - Organometallic complexes for nonlinear optics. Part 29. Quadratic and cubic hyperpolarizabilities of stilbenylethynyl-gold and -ruthenium complexes
AU - Hurst, Stephanie K.
AU - Lucas, Nigel T.
AU - Humphrey, Mark G.
AU - Isoshima, Takashi
AU - Wostyn, Kurt
AU - Asselberghs, Inge
AU - Clays, Koen
AU - Persoons, André
AU - Samoc, Marek
AU - Luther-Davies, Barry
N1 - Funding Information:
M.G.H. thanks the Australian Research Council (ARC) for financial support, Johnson-Matthey Technology Center for the generous loan of ruthenium salts, the ARC for an Australian Senior Research Fellowship and the Science and Technology Agency of Japan (STA) for a Fellowship. A.P. thanks the Belgian Government (Grant No. IUAP-IV/11), the Fund for Scientific Research-Flanders (G.0338.98, G.0407.98) (AP), and the K.U. Leuven (GOA/2000/03) (AP) for support of this work. T.I. thanks the Japan Science and Technology Corporation for partial support of this work through the Core Research for Evolutional Science and Technology (CREST) program (‘Hyper-Structured Molecules and Their Application to Organic Quantum Devices’ project headed by Professor H. Sasabe (Chitose Institute of Science and Technology, Japan)).
PY - 2003/7/4
Y1 - 2003/7/4
N2 - The compounds (E)-4-XC≡CC6H4CH=CHPh [X=SiMe3 (1), H (2)], 1,3,5-{(E)-4-XC6H 4CH=CH}3C6H3 [X=I (3), C≡CSiMe3 (4), C≡CH (5)], [Au{(E)-4-C≡CC 6H4CH=CHPh}(L)] [L=PPh3 (6), PMe3 (7)], [Au(4-C≡CC6H4C≡CPh)(L)] [L=PPh 3 (8), PMe3 (9)], 1,3,5-[(Ph3P)Au{(E)-4- C≡CC6H4CH=CH}]3C6H 3 (10), trans-[Ru{(E)-4-C=CHC6H4CH=CHPh} Cl(dppm)2]PF6 (11), trans-[Ru{(E)-4-C≡CC 6H4CH=CHPh}Cl(L2)2] [L 2=dppm (12), dppe (13)], [1,3,5-(trans-[(dppm)2ClRu{(E)-4- C=CHC6H4CH=CH}])3C6H 3](PF6)3 (14), 1,3,5-(trans-[(L 2)2ClRu{(E)-4-C≡CC6H4CH=CH}]) 3C6H3 [L2=dppm (15), dppe (16)] and 1,3,5-(trans-[(dppe)2(PhC≡C)Ru{(E)-4-C≡CC 6H4CH=CH}])3C6H3 (17) have been prepared (and the identity of 6 confirmed by a single-crystal X-ray diffraction study), and their electrochemical (Ru complexes) and nonlinear optical (NLO) properties assessed. The ruthenium complexes display reversible (12, 13, 15-17) or nonreversible (11, 14) processes attributable to Ru-centered oxidation, at potentials similar to those of previously-investigated monoruthenium alkynyl or vinylidene complexes. No evidence for intermetallic electronic communication in 14-17 is observed. Quadratic nonlinearities at 1064 and 800 nm for the octopolar stilbenyl-ruthenium complexes 14, 15 are large for compounds without strongly accepting substituents. Cubic molecular hyperpolarizabilities at 800 nm for the organic compounds and gold complexes are low. Cubic nonlinearities |γ|800 and two-photon absorption (TPA) cross-sections σ2 for the ruthenium complexes increase on proceeding from linear analogues 12, 13 to octopolar complexes 15, 16; the latter and 17 possess some of the largest |γ|800 and σ2 values for organometallics thus far. Cubic nonlinearities Im(χ(3))/N for 13, 16, and 17 from the first application of electroabsorption (EA) spectroscopy to organometallics are also large, scaling with the number of metal atoms.
AB - The compounds (E)-4-XC≡CC6H4CH=CHPh [X=SiMe3 (1), H (2)], 1,3,5-{(E)-4-XC6H 4CH=CH}3C6H3 [X=I (3), C≡CSiMe3 (4), C≡CH (5)], [Au{(E)-4-C≡CC 6H4CH=CHPh}(L)] [L=PPh3 (6), PMe3 (7)], [Au(4-C≡CC6H4C≡CPh)(L)] [L=PPh 3 (8), PMe3 (9)], 1,3,5-[(Ph3P)Au{(E)-4- C≡CC6H4CH=CH}]3C6H 3 (10), trans-[Ru{(E)-4-C=CHC6H4CH=CHPh} Cl(dppm)2]PF6 (11), trans-[Ru{(E)-4-C≡CC 6H4CH=CHPh}Cl(L2)2] [L 2=dppm (12), dppe (13)], [1,3,5-(trans-[(dppm)2ClRu{(E)-4- C=CHC6H4CH=CH}])3C6H 3](PF6)3 (14), 1,3,5-(trans-[(L 2)2ClRu{(E)-4-C≡CC6H4CH=CH}]) 3C6H3 [L2=dppm (15), dppe (16)] and 1,3,5-(trans-[(dppe)2(PhC≡C)Ru{(E)-4-C≡CC 6H4CH=CH}])3C6H3 (17) have been prepared (and the identity of 6 confirmed by a single-crystal X-ray diffraction study), and their electrochemical (Ru complexes) and nonlinear optical (NLO) properties assessed. The ruthenium complexes display reversible (12, 13, 15-17) or nonreversible (11, 14) processes attributable to Ru-centered oxidation, at potentials similar to those of previously-investigated monoruthenium alkynyl or vinylidene complexes. No evidence for intermetallic electronic communication in 14-17 is observed. Quadratic nonlinearities at 1064 and 800 nm for the octopolar stilbenyl-ruthenium complexes 14, 15 are large for compounds without strongly accepting substituents. Cubic molecular hyperpolarizabilities at 800 nm for the organic compounds and gold complexes are low. Cubic nonlinearities |γ|800 and two-photon absorption (TPA) cross-sections σ2 for the ruthenium complexes increase on proceeding from linear analogues 12, 13 to octopolar complexes 15, 16; the latter and 17 possess some of the largest |γ|800 and σ2 values for organometallics thus far. Cubic nonlinearities Im(χ(3))/N for 13, 16, and 17 from the first application of electroabsorption (EA) spectroscopy to organometallics are also large, scaling with the number of metal atoms.
KW - Acetylide
KW - Electrochemistry
KW - Gold
KW - Hyperpolarizability
KW - Nonlinear optics
KW - Ruthenium
UR - http://www.scopus.com/inward/record.url?scp=0142025257&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0142025257&partnerID=8YFLogxK
U2 - 10.1016/S0020-1693(02)01497-4
DO - 10.1016/S0020-1693(02)01497-4
M3 - Article
AN - SCOPUS:0142025257
SN - 0020-1693
VL - 350
SP - 62
EP - 76
JO - Inorganica Chimica Acta
JF - Inorganica Chimica Acta
ER -