On the impact of the vertical structure of Martian water ice clouds on nadir atmospheric retrievals from simultaneous EMM/EXI and TGO/ACS-MIR observations.

Aurélien Stcherbinine, Michael J. Wolff, Christopher S. Edwards, Oleg Korablev, Anna Fedorova, Alexander Trokhimovskiy

Research output: Contribution to journalArticlepeer-review

Abstract

Retrieving the optical depth of the Martian clouds (τcld) is a powerful way to monitor their spatial and temporal evolution. However, such retrievals from nadir imagery rely on several assumptions, including the vertical structure of the clouds in the atmosphere. Here we compare the results of cloud optical depth retrievals at 320 nm from the Emirates eXploration Imager (EXI) onboard the Emirates Mars Mission (EMM) “Hope” orbiter performed using a basic uniform cloud profile used in previous studies and using derived cloud profiles obtained from near-simultaneous Solar Occultation observations in the 3.1–3.4 μm spectral range from the Middle-Infrared channel of the Atmospheric Chemistry Suite (ACS) instrument onboard the ESA Trace Gas Orbiter (TGO). We show that the latitudinal dependence of the cloud vertical profiles can have a strong impact on the nadir retrievals; neglecting it can lead to a significant underestimation of τcld in the polar regions (up to 25 % to 50 %, depending on the vertical distribution of the dust in the atmosphere) and to a lesser extent, to an overestimation of τcld around the equator. We also discuss the impact of a vertically-dependent particle size profile, as previous studies have shown the presence of very small water ice particles at the top of the clouds. From this analysis, we provide recommendations for the improvement of water ice cloud parameterization in radiative transfer algorithms in nadir atmospheric retrievals.

Original languageEnglish (US)
Article number116335
JournalIcarus
Volume425
DOIs
StatePublished - Jan 1 2025

Keywords

  • Atmosphere
  • Clouds
  • Mars
  • Observations
  • Radiative transfer

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'On the impact of the vertical structure of Martian water ice clouds on nadir atmospheric retrievals from simultaneous EMM/EXI and TGO/ACS-MIR observations.'. Together they form a unique fingerprint.

Cite this