Nanoparticle stability from the nano to the meso interval

Alvaro Mayoral, Hector Barron, Ruben Estrada-Salas, Alma Vazquez-Duran, Miguel José-Yacamán

Research output: Contribution to journalReview articlepeer-review

76 Scopus citations


Nanoparticles are the cornerstone of nanotechnology. Their crystal structure and relation to shape are still open problems despite a lot of advances in the field. The classical theory of nanoparticle stability predicts that for sizes <1.5-2 nm the icosahedral structure should be the most stable, then between around 2-5 nm, the decahedral shape should be the most stable. Beyond that, face-centered-cubic (FCC) structures will be the predominant phase. However, in the experimental side, icosahedral (Ih) and decahedral (Dh) particles can be observed much beyond the 5 nm limit. In fact, it is possible to find Ih and Dh particles even in the mesoscopic range. Conversely, it is possible to find FCC particles with a size <1.5 nm. In this paper we review a number of the mechanisms proposed in the literature that allow the stabilization of nanoparticles. Some of the mechanisms are very interrelated and it becomes difficult to distinguish between them.

Original languageEnglish (US)
Pages (from-to)335-342
Number of pages8
Issue number3
StatePublished - 2010
Externally publishedYes

ASJC Scopus subject areas

  • General Materials Science


Dive into the research topics of 'Nanoparticle stability from the nano to the meso interval'. Together they form a unique fingerprint.

Cite this