Multi-resolution gridded maps of vegetation structure from GEDI

Patrick Burns, Christopher R. Hakkenberg, Scott J. Goetz

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

Large-extent maps of three-dimensional vegetation structure are important for understanding the hydrologic cycle, climate, carbon fluxes, and habitat. We aggregated over 7 billion lidar shots from the Global Ecosystem Dynamics Investigation (GEDI) to produce analysis-ready, gridded rasters of 36 vegetation structure metrics at three spatial resolutions (1, 6, and 12 km). We used 8 statistics to grid shots in every pixel, specifically the mean, bootstrapped standard error of the mean, median, standard deviation, interquartile range, Shannon’s Diversity Index, and shot count. We quantified uncertainty of the mean by randomly selecting 100 subsets of shots (i.e. bootstrapping) within each pixel. We also assessed the accuracy of several gridded metrics using fine spatial resolution airborne laser scanning data. The gridded metrics are generally more accurate at mid latitudes due to higher shot density and lower density of vegetation. Statistics associated with the central or maximum tendency of a metric are more accurate than statistics related to variability of metric values within the pixel.

Original languageEnglish (US)
Article number881
JournalScientific Data
Volume11
Issue number1
DOIs
StatePublished - Dec 2024

ASJC Scopus subject areas

  • Statistics and Probability
  • Information Systems
  • Education
  • Computer Science Applications
  • Statistics, Probability and Uncertainty
  • Library and Information Sciences

Fingerprint

Dive into the research topics of 'Multi-resolution gridded maps of vegetation structure from GEDI'. Together they form a unique fingerprint.

Cite this