TY - JOUR
T1 - Multi-omics analysis of periodontal pocket microbial communities pre- and posttreatment
AU - Califf, Katy J.
AU - Schwarzberg-Lipson, Karen
AU - Garg, Neha
AU - Gibbons, Sean M.
AU - Caporaso, J. Gregory
AU - Slots, Jørgen
AU - Cohen, Chloe
AU - Dorrestein, Pieter C.
AU - Kelley, Scott T.
N1 - Funding Information:
Maria Galvan and Stephanie Gonzalez performed the clinical part of this study. We thank the members of the Next Generation Sequencing Core at TSRI. We also thank Gail Ackermann for her hard work quality checking our 16S rRNA metadata and loading the data onto the European Bioinformatics Institute analysis pipeline. 16S rRNA microbiome bioinformatic analysis was performed on the Monsoon supercomputer at Northern Arizona University.
Publisher Copyright:
Copyright © 2017 Califf et al.
PY - 2017/5/1
Y1 - 2017/5/1
N2 - Periodontitis is a polymicrobial infectious disease that causes breakdown of the periodontal ligament and alveolar bone. We employed a meta-omics approach that included microbial 16S rRNA amplicon sequencing, shotgun metagenomics, and tandem mass spectrometry to analyze sub- and supragingival biofilms in adults with chronic periodontitis pre- and posttreatment with 0.25% sodium hypochlorite. Microbial samples were collected with periodontal curettes from 3- to 12- mm-deep periodontal pockets at the baseline and at 2 weeks and 3 months. All data types showed high interpersonal variability, and there was a significant correlation between phylogenetic diversity and pocket depth at the baseline and a strong correlation (rho = 0.21; P = 0.008) between metabolite diversity and maximum pocket depth (MPD). Analysis of subgingival baseline samples (16S rRNA and shotgun metagenomics) found positive correlations between abundances of particular bacterial genera and MPD, including Porphyromonas, Treponema, Tannerella, and Desulfovibrio species and unknown taxon SHD-231. At 2 weeks posttreatment, we observed an almost complete turnover in the bacterial genera (16S rRNA) and species (shotgun metagenomics) correlated with MPD. Among the metabolites detected, the medians of the 20 most abundant metabolites were significantly correlated with MPD pre- and posttreatment. Finally, tests of periodontal biofilm community instability found markedly higher taxonomic instability in patients who did not improve posttreatment than in patients who did improve (UniFrac distances; t = -3.59; P = 0.002). Interestingly, the opposite pattern occurred in the metabolic profiles (Bray- Curtis; t = 2.42; P = 0.02). Our results suggested that multi-omics approaches, and metabolomics analysis in particular, could enhance treatment prediction and reveal patients most likely to improve posttreatment.
AB - Periodontitis is a polymicrobial infectious disease that causes breakdown of the periodontal ligament and alveolar bone. We employed a meta-omics approach that included microbial 16S rRNA amplicon sequencing, shotgun metagenomics, and tandem mass spectrometry to analyze sub- and supragingival biofilms in adults with chronic periodontitis pre- and posttreatment with 0.25% sodium hypochlorite. Microbial samples were collected with periodontal curettes from 3- to 12- mm-deep periodontal pockets at the baseline and at 2 weeks and 3 months. All data types showed high interpersonal variability, and there was a significant correlation between phylogenetic diversity and pocket depth at the baseline and a strong correlation (rho = 0.21; P = 0.008) between metabolite diversity and maximum pocket depth (MPD). Analysis of subgingival baseline samples (16S rRNA and shotgun metagenomics) found positive correlations between abundances of particular bacterial genera and MPD, including Porphyromonas, Treponema, Tannerella, and Desulfovibrio species and unknown taxon SHD-231. At 2 weeks posttreatment, we observed an almost complete turnover in the bacterial genera (16S rRNA) and species (shotgun metagenomics) correlated with MPD. Among the metabolites detected, the medians of the 20 most abundant metabolites were significantly correlated with MPD pre- and posttreatment. Finally, tests of periodontal biofilm community instability found markedly higher taxonomic instability in patients who did not improve posttreatment than in patients who did improve (UniFrac distances; t = -3.59; P = 0.002). Interestingly, the opposite pattern occurred in the metabolic profiles (Bray- Curtis; t = 2.42; P = 0.02). Our results suggested that multi-omics approaches, and metabolomics analysis in particular, could enhance treatment prediction and reveal patients most likely to improve posttreatment.
KW - 16S rRNA
KW - Diagnostics
KW - Metabolome
KW - Microbiome
KW - Molecular networking
KW - Periodontal disease
KW - Periodontitis
KW - Shotgun metagenomics
UR - http://www.scopus.com/inward/record.url?scp=85041666146&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85041666146&partnerID=8YFLogxK
U2 - 10.1128/mSystems.00016-17
DO - 10.1128/mSystems.00016-17
M3 - Article
AN - SCOPUS:85041666146
SN - 2379-5077
VL - 2
JO - mSystems
JF - mSystems
IS - 3
M1 - e00016
ER -