MODIS phenology-derived, multi-year distribution of conterminous U.S. crop types

Richard Massey, Temuulen T. Sankey, Russell G. Congalton, Kamini Yadav, Prasad S. Thenkabail, Mutlu Ozdogan, Andrew J. Sánchez Meador

Research output: Contribution to journalArticlepeer-review

127 Scopus citations

Abstract

Innovative, open, and rapid methods to map crop types over large areas are needed for long-term cropland monitoring. We developed two novel and automated decision tree classification approaches to map crop types across the conterminous United States (U.S.) using MODIS 250 m resolution data: 1) generalized, and 2) year-specific classification. The classification approaches use similarities and dissimilarities in crop type phenology derived from NDVI time-series data for the two approaches. The year-specific approach uses the training samples from one year and classifies crop types for that year only, whereas the generalized classification approach uses above-average, average, and below-average precipitation years for training to produce crop type maps for one or multiple years more robustly. We produced annual crop type maps using the generalized classification approach for 2001–2014 and the year-specific approach for 2008, 2010, 2011 and 2012. The year-specific classification had overall accuracies > 78%, while the generalized classifier had accuracies > 75% for the conterminous U.S. for 2008, 2010, 2011, and 2012. The generalized classifier enables automated and routine crop type mapping without repeated and expensive ground sample collection year after year. The resulting crop type maps for years prior to 2007 are new and especially important for long-term cropland monitoring and food security analysis because no other map products are currently available for 2001–2007.

Original languageEnglish (US)
Pages (from-to)490-503
Number of pages14
JournalRemote Sensing of Environment
Volume198
DOIs
StatePublished - Sep 1 2017

Keywords

  • Adjusted kappa
  • Cropland data layer
  • Cropland mapping
  • Generalized classifier
  • MOD09Q1
  • NDVI time-series
  • United States croplands

ASJC Scopus subject areas

  • Soil Science
  • Geology
  • Computers in Earth Sciences

Fingerprint

Dive into the research topics of 'MODIS phenology-derived, multi-year distribution of conterminous U.S. crop types'. Together they form a unique fingerprint.

Cite this