Minimization of muscle fatigue as the criterion to solve muscle forces-sharing problem

Research output: Chapter in Book/Report/Conference proceedingConference contribution

4 Scopus citations

Abstract

The application of functional electrical stimulation (FES) to muscles quickly fatigues them. Our research goal is to determine the optimal control of FES signals that delay the fatigue for as long as possible. In this research we have used a physiologybased mathematical model of muscle fatigue, to study the behaviour of a musculoskeletal system during a prolonged exercise. To solve the redundant problem of muscle force sharing, we have used a time-dependent fatigue minimization objective instead of the usual activation-based minimization criteria. Our results showed that muscle co-activation, as seen in natural human motion, does not necessarily minimize muscle fatigue.

Original languageEnglish (US)
Title of host publicationAdaptive and Intelligent Systems Control; Advances in Control Design Methods; Advances in Non-Linear and Optimal Control; Advances in Robotics; Advances in Wind Energy Systems; Aerospace Applications; Aerospace Power Optimization; Assistive Robotics; Automotive 2
Subtitle of host publicationHybrid Electric Vehicles; Automotive 3: Internal Combustion Engines; Automotive Engine Control; Battery Management; Bio Engineering Applications; Biomed and Neural Systems; Connected Vehicles; Control of Robotic Systems
PublisherAmerican Society of Mechanical Engineers
ISBN (Electronic)9780791857243
DOIs
StatePublished - 2015
Externally publishedYes
EventASME 2015 Dynamic Systems and Control Conference, DSCC 2015 - Columbus, United States
Duration: Oct 28 2015Oct 30 2015

Publication series

NameASME 2015 Dynamic Systems and Control Conference, DSCC 2015
Volume1

Conference

ConferenceASME 2015 Dynamic Systems and Control Conference, DSCC 2015
Country/TerritoryUnited States
CityColumbus
Period10/28/1510/30/15

ASJC Scopus subject areas

  • Industrial and Manufacturing Engineering
  • Mechanical Engineering
  • Control and Systems Engineering

Fingerprint

Dive into the research topics of 'Minimization of muscle fatigue as the criterion to solve muscle forces-sharing problem'. Together they form a unique fingerprint.

Cite this