TY - JOUR
T1 - Migratory Outbursting Quasi-Hilda Object 282P/(323137) 2003 BM80***
AU - Chandler, Colin Orion
AU - Oldroyd, William J.
AU - Trujillo, Chadwick A.
N1 - Publisher Copyright:
© 2022. The Author(s). Published by the American Astronomical Society.
PY - 2022/9/1
Y1 - 2022/9/1
N2 - We report that object 282P/(323137) 2003 BM80 is undergoing a sustained activity outburst, lasting over 15 months thus far. These findings stem in part from our NASA Partner Citizen Science project Active Asteroids (http://activeasteroids.net), which we introduce here. We acquired new observations of 282P via our observing campaign (Vatican Advanced Technology Telescope (VATT), Lowell Discovery Telescope (LDT), and the Gemini South telescope), confirming 282P was active on UT 2022 June 7, some 15 months after 2021 March images showed activity in the 2021-2022 epoch. We classify 282P as a member of the quasi-Hilda objects (QHOs), a group of dynamically unstable objects found in an orbital region similar to, but distinct in their dynamical characteristics to, the Hilda asteroids (objects in 3:2 resonance with Jupiter). Our dynamical simulations show 282P has undergone at least five close encounters with Jupiter and one with Saturn over the last 180 yr. 282P was most likely a Centaur or Jupiter-family comet (JFC) 250 yr ago. In 350 yr, following some 15 strong Jovian interactions, 282P will most likely migrate to become a JFC or, less likely, an outer main-belt asteroid orbit. These migrations highlight a dynamical pathway connecting Centaurs and JFCs with quasi-Hildas and, potentially, active asteroids. Synthesizing these results with our thermodynamical modeling and new activity observations, we find volatile sublimation is the primary activity mechanism. Observations of a quiescent 282P, which we anticipate will be possible in 2023, will help confirm our hypothesis by measuring a rotation period and ascertaining the spectral type.
AB - We report that object 282P/(323137) 2003 BM80 is undergoing a sustained activity outburst, lasting over 15 months thus far. These findings stem in part from our NASA Partner Citizen Science project Active Asteroids (http://activeasteroids.net), which we introduce here. We acquired new observations of 282P via our observing campaign (Vatican Advanced Technology Telescope (VATT), Lowell Discovery Telescope (LDT), and the Gemini South telescope), confirming 282P was active on UT 2022 June 7, some 15 months after 2021 March images showed activity in the 2021-2022 epoch. We classify 282P as a member of the quasi-Hilda objects (QHOs), a group of dynamically unstable objects found in an orbital region similar to, but distinct in their dynamical characteristics to, the Hilda asteroids (objects in 3:2 resonance with Jupiter). Our dynamical simulations show 282P has undergone at least five close encounters with Jupiter and one with Saturn over the last 180 yr. 282P was most likely a Centaur or Jupiter-family comet (JFC) 250 yr ago. In 350 yr, following some 15 strong Jovian interactions, 282P will most likely migrate to become a JFC or, less likely, an outer main-belt asteroid orbit. These migrations highlight a dynamical pathway connecting Centaurs and JFCs with quasi-Hildas and, potentially, active asteroids. Synthesizing these results with our thermodynamical modeling and new activity observations, we find volatile sublimation is the primary activity mechanism. Observations of a quiescent 282P, which we anticipate will be possible in 2023, will help confirm our hypothesis by measuring a rotation period and ascertaining the spectral type.
UR - http://www.scopus.com/inward/record.url?scp=85139087826&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85139087826&partnerID=8YFLogxK
U2 - 10.3847/2041-8213/ac897a
DO - 10.3847/2041-8213/ac897a
M3 - Article
AN - SCOPUS:85139087826
SN - 2041-8205
VL - 937
JO - Astrophysical Journal Letters
JF - Astrophysical Journal Letters
IS - 1
ER -