Abstract
The diversity of investigations of planetary surfaces, especially Mars, using in situ instrumentation over the last decade is unprecedented in the exploration history of our solar system. The style of instrumentation that landed spacecraft can support is dependent on several parameters, including mass, power consumption, instrument complexity, cost, and desired measurement type (e.g., chemistry, mineralogy, petrology, morphology, etc.), all of which must be evaluated when deciding an appropriate spacecraft pay-load. We present a laboratory technique for a microscopic emission and reflectance spectrometer for the analysis of martian analog materials as a strong candidate for the next generation of in situ instruments designed to definitively assess sample mineralogy and petrology while preserving geologic context. We discuss the instrument capabilities, signal and noise, and overall system performance. We evaluate the ability of this instrument to quantitatively determine sample mineralogy, including bulk mineral abundances. This capability is greatly enhanced. Whereas the number of mineral components observed from existing emission spectrometers is high (often >5 to 10 depending on the number of accessory and alteration phases present), the number of mineral components at any microscopic measurement spot is low (typically <2 to 3). Since this style of instrument is based on a long heritage of thermal infrared emission spectrometers sent to orbit (the thermal emission spectrometer), sent to planetary surfaces [the minithermal emission spectrometers (mini-TES)], and evaluated in laboratory environments (e.g., the Arizona State University emission spectrometer laboratory), direct comparisons to existing data are uniquely possible with this style of instrument. The ability to obtain bulk mineralogy and atmospheric data, much in the same manner as the mini-TESs, is of significant additional value and maintains the long history of atmospheric monitoring for Mars. Miniaturization of this instrument has also been demonstrated, as the same microscope objective has been mounted to a flight-spare mini-TES. Further miniaturization of this instrument is straightforward with modern electronics, and the development of this instrument as an arm-mounted device is the end goal.
Original language | English (US) |
---|---|
Pages (from-to) | 2200-2217 |
Number of pages | 18 |
Journal | Applied Optics |
Volume | 52 |
Issue number | 11 |
DOIs | |
State | Published - Apr 10 2013 |
Externally published | Yes |
ASJC Scopus subject areas
- Atomic and Molecular Physics, and Optics
- Engineering (miscellaneous)
- Electrical and Electronic Engineering