Maximum Carboxylation Rate Estimation With Chlorophyll Content as a Proxy of Rubisco Content

Xuehe Lu, Weimin Ju, Jing Li, Holly Croft, Jing M. Chen, Yiqi Luo, Hua Yu, Haijing Hu

Research output: Contribution to journalArticlepeer-review

23 Scopus citations


The maximum carboxylation rate (Vcmax) is a key parameter in determining the plant photosynthesis rate per unit leaf area. However, most terrestrial biosphere models currently treat Vcmax as constants changing only with plant functional types, leading to large uncertainties in modeled carbon fluxes. Vcmax is tightly linked with Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). Here we investigated the relationship between leaf chlorophyll and Rubisco (Chl-Rub) contents within a winter wheat paddock. With chlorophyll as a proxy of Rubisco, a semimechanistic model was developed to model Vcmax25 (Vcmax normalized to 25°C). The Chl-Rub relationship was validated using measurements in a temperate mixed deciduous forest in Canada. The results showed that Rubisco was strongly correlated with chlorophyll (R2 = 0.96, p < 0.001) for winter wheat since the absorption of light energy by chlorophyll and the amount of CO2 catalyzed by Rubisco are tightly coupled. Incorporating the Chl-Rub relationship into the semimechanistic model, the root mean square error of modeled Vcmax25 was the lowest among all estimation models. The slopes of Chl-Rub relations were almost consistent in the winter wheat and temperate forest, demonstrating the potential for using leaf chlorophyll content as a proxy of leaf Rubisco in modeling Vcmax25 at large spatial scales. We anticipate that improving Vcmax25 estimates over time and space will reduce uncertainties in global carbon budgets simulated by terrestrial biosphere models.

Original languageEnglish (US)
Article numbere2020JG005748
JournalJournal of Geophysical Research: Biogeosciences
Issue number8
StatePublished - Aug 1 2020


  • Rubisco
  • Vcmax
  • carbon cycle
  • chlorophyll
  • photosynthesis
  • terrestrial biosphere models

ASJC Scopus subject areas

  • Soil Science
  • Forestry
  • Water Science and Technology
  • Palaeontology
  • Atmospheric Science
  • Aquatic Science
  • Ecology


Dive into the research topics of 'Maximum Carboxylation Rate Estimation With Chlorophyll Content as a Proxy of Rubisco Content'. Together they form a unique fingerprint.

Cite this