TY - JOUR
T1 - Low-temperature specific heat capacity measurements and application to Mars thermal modeling
AU - Vu, Tuan H.
AU - Piqueux, Sylvain
AU - Choukroun, Mathieu
AU - Edwards, Christopher S.
AU - Christensen, Philip R.
AU - Glotch, Timothy D.
N1 - Publisher Copyright:
© 2018 Elsevier Inc.
PY - 2019/3/15
Y1 - 2019/3/15
N2 - Data returned from Martian missions have revealed a wide diversity of surface mineralogies, including in geological structures interpreted to be sedimentary or altered by liquid water. These terrains are of great interest because of their potential to document the environment at a time when life may have appeared. Intriguingly, Martian sedimentary rocks show distinctly low thermal inertia values (i.e. 300 - 700 Jm−2K−1s−1/2, indicative of a combination of low thermal conductivity, specific heat capacity, and density). These low values are difficult to reconcile with their competent bedrock morphologies, whereas hundreds of bedrock occurrences, interpreted as volcanic in origin, have been mapped globally and display thermal inertia values > 1200 Jm−2K−1s−1/2. Bedrock thermal inertia values are generally assumed to be driven by their bulk thermal conductivity, which in turn is controlled by their micro- and macro-physical properties (i.e., degree and style of cementation in the case of detritic rocks, horizontal fractures and layering, etc.), and not by their density (well-known from terrestrial analog measurements, and with modest variability) or specific heat capacity (generally uncharacterized for non-basaltic materials below room temperature). In this paper, we demonstrate that specific heat capacity cannot be a potential cause for the differential thermophysical behavior between magmatic and sedimentary rocks through a series of experimental Cp(T) measurements at 100–350 K using differential scanning calorimetry. The results on 20 Martian-relevant minerals investigated in this work indicate that these materials exhibit very similar specific heats, ranging from 0.3–0.7 Jg−1K−1 at 100 K to 0.6–1.7 Jg−1K−1 at 350 K. When used in a Martian thermal model, this range of Cp values translate to very small surface temperature differences, indicating that uncertainty in composition (and its effect on the specific heat) is not a noticeable source of thermal inertia variability for indurated units on Mars. We therefore conclude that the low thermal inertia value of sedimentary rocks compared to magmatic/volcanic rocks is likely due to their low apparent bulk conductivity, which bears information on their internal physical structure. Future work combining the analysis of thermal observations acquired at various local times and seasons will help further characterize this heterogeneity.
AB - Data returned from Martian missions have revealed a wide diversity of surface mineralogies, including in geological structures interpreted to be sedimentary or altered by liquid water. These terrains are of great interest because of their potential to document the environment at a time when life may have appeared. Intriguingly, Martian sedimentary rocks show distinctly low thermal inertia values (i.e. 300 - 700 Jm−2K−1s−1/2, indicative of a combination of low thermal conductivity, specific heat capacity, and density). These low values are difficult to reconcile with their competent bedrock morphologies, whereas hundreds of bedrock occurrences, interpreted as volcanic in origin, have been mapped globally and display thermal inertia values > 1200 Jm−2K−1s−1/2. Bedrock thermal inertia values are generally assumed to be driven by their bulk thermal conductivity, which in turn is controlled by their micro- and macro-physical properties (i.e., degree and style of cementation in the case of detritic rocks, horizontal fractures and layering, etc.), and not by their density (well-known from terrestrial analog measurements, and with modest variability) or specific heat capacity (generally uncharacterized for non-basaltic materials below room temperature). In this paper, we demonstrate that specific heat capacity cannot be a potential cause for the differential thermophysical behavior between magmatic and sedimentary rocks through a series of experimental Cp(T) measurements at 100–350 K using differential scanning calorimetry. The results on 20 Martian-relevant minerals investigated in this work indicate that these materials exhibit very similar specific heats, ranging from 0.3–0.7 Jg−1K−1 at 100 K to 0.6–1.7 Jg−1K−1 at 350 K. When used in a Martian thermal model, this range of Cp values translate to very small surface temperature differences, indicating that uncertainty in composition (and its effect on the specific heat) is not a noticeable source of thermal inertia variability for indurated units on Mars. We therefore conclude that the low thermal inertia value of sedimentary rocks compared to magmatic/volcanic rocks is likely due to their low apparent bulk conductivity, which bears information on their internal physical structure. Future work combining the analysis of thermal observations acquired at various local times and seasons will help further characterize this heterogeneity.
UR - http://www.scopus.com/inward/record.url?scp=85058967241&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85058967241&partnerID=8YFLogxK
U2 - 10.1016/j.icarus.2018.10.004
DO - 10.1016/j.icarus.2018.10.004
M3 - Article
AN - SCOPUS:85058967241
SN - 0019-1035
VL - 321
SP - 824
EP - 840
JO - Icarus
JF - Icarus
ER -