Long-term nitrogen deposition enhances microbial capacities in soil carbon stabilization but reduces network complexity

Xingyu Ma, Tengxu Wang, Zhou Shi, Nona R. Chiariello, Kathryn Docherty, Christopher B. Field, Jessica Gutknecht, Qun Gao, Yunfu Gu, Xue Guo, Bruce A. Hungate, Jiesi Lei, Audrey Niboyet, Xavier Le Roux, Mengting Yuan, Tong Yuan, Jizhong Zhou, Yunfeng Yang

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

Background: Anthropogenic activities have increased the inputs of atmospheric reactive nitrogen (N) into terrestrial ecosystems, affecting soil carbon stability and microbial communities. Previous studies have primarily examined the effects of nitrogen deposition on microbial taxonomy, enzymatic activities, and functional processes. Here, we examined various functional traits of soil microbial communities and how these traits are interrelated in a Mediterranean-type grassland administrated with 14 years of 7 g m−2 year−1 of N amendment, based on estimated atmospheric N deposition in areas within California, USA, by the end of the twenty-first century. Results: Soil microbial communities were significantly altered by N deposition. Consistent with higher aboveground plant biomass and litter, fast-growing bacteria, assessed by abundance-weighted average rRNA operon copy number, were favored in N deposited soils. The relative abundances of genes associated with labile carbon (C) degradation (e.g., amyA and cda) were also increased. In contrast, the relative abundances of functional genes associated with the degradation of more recalcitrant C (e.g., mannanase and chitinase) were either unchanged or decreased. Compared with the ambient control, N deposition significantly reduced network complexity, such as average degree and connectedness. The network for N deposited samples contained only genes associated with C degradation, suggesting that C degradation genes became more intensely connected under N deposition. Conclusions: We propose a conceptual model to summarize the mechanisms of how changes in above- and belowground ecosystems by long-term N deposition collectively lead to more soil C accumulation. [MediaObject not available: see fulltext.].

Original languageEnglish (US)
Article number112
JournalMicrobiome
Volume10
Issue number1
DOIs
StatePublished - Dec 2022

Keywords

  • GeoChip
  • Global change
  • High-throughput sequencing
  • Nitrogen deposition
  • Soil microbial community

ASJC Scopus subject areas

  • Microbiology
  • Microbiology (medical)

Fingerprint

Dive into the research topics of 'Long-term nitrogen deposition enhances microbial capacities in soil carbon stabilization but reduces network complexity'. Together they form a unique fingerprint.

Cite this