Live Cell Light Sheet Imaging with Low- and High-Spatial-Coherence Detection Approaches Reveals Spatiotemporal Aspects of Neuronal Signaling

Mariana Potcoava, Donatella Contini, Zachary Zurawski, Spencer Huynh, Christopher Mann, Jonathan Art, Simon Alford

Research output: Contribution to journalArticlepeer-review


Light sheet microscopy in live cells requires minimal excitation intensity and resolves three-dimensional (3D) information rapidly. Lattice light sheet microscopy (LLSM) works similarly but uses a lattice configuration of Bessel beams to generate a flatter, diffraction-limited z-axis sheet suitable for investigating subcellular compartments, with better tissue penetration. We developed a LLSM method for investigating cellular properties of tissue in situ. Neural structures provide an important target. Neurons are complex 3D structures, and signaling between cells and subcellular structures requires high resolution imaging. We developed an LLSM configuration based on the Janelia Research Campus design or in situ recording that allows simultaneous electrophysiological recording. We give examples of using LLSM to assess synaptic function in situ. In presynapses, evoked Ca2+ entry causes vesicle fusion and neurotransmitter release. We demonstrate the use of LLSM to measure stimulus-evoked localized presynaptic Ca2+ entry and track synaptic vesicle recycling. We also demonstrate the resolution of postsynaptic Ca2+ signaling in single synapses. A challenge in 3D imaging is the need to move the emission objective to maintain focus. We have developed an incoherent holographic lattice light-sheet (IHLLS) technique to replace the LLS tube lens with a dual diffractive lens to obtain 3D images of spatially incoherent light diffracted from an object as incoherent holograms. The 3D structure is reproduced within the scanned volume without moving the emission objective. This eliminates mechanical artifacts and improves temporal resolution. We focus on LLS and IHLLS applications and data obtained in neuroscience and emphasize increases in temporal and spatial resolution using these approaches.

Original languageEnglish (US)
Article number121
JournalJournal of Imaging
Issue number6
StatePublished - Jun 2023


  • electrophysiology and simultaneous imaging
  • fluorescence microscopy
  • in situ recording
  • incoherent lattice light sheet
  • lattice light sheet holography
  • synaptic function
  • tomographic imaging

ASJC Scopus subject areas

  • Radiology Nuclear Medicine and imaging
  • Computer Vision and Pattern Recognition
  • Computer Graphics and Computer-Aided Design
  • Electrical and Electronic Engineering


Dive into the research topics of 'Live Cell Light Sheet Imaging with Low- and High-Spatial-Coherence Detection Approaches Reveals Spatiotemporal Aspects of Neuronal Signaling'. Together they form a unique fingerprint.

Cite this