TY - JOUR
T1 - Linking sedimentation in the northern Andes to basement configuration, Mesozoic extension, and Cenozoic shortening
T2 - Evidence from detrital zircon U-Pb ages, Eastern Cordillera, Colombia
AU - Horton, Brian K.
AU - Saylor, Joel E.
AU - Nie, Junsheng
AU - Mora, Andrés
AU - Parra, Mauricio
AU - Reyes-Harker, Andrés
AU - Stockli, Daniel F.
PY - 2010/9
Y1 - 2010/9
N2 - Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) analyses of 29 samples from the Eastern Cordillera of Colombia reveal the origin of northern Andean basement and patterns of sedimentation during Paleozoic subsidence, Jurassic-Early Cretaceous extension, Late Cretaceous postrift subsidence, and Cenozoic shortening and foreland-basin evolution. U-Pb geochronological results indicate that presumed Precambrian basement is mainly a product of early Paleozoic mag-matism (520-420 Ma) potentially linked to subduction and possible collision. Inherited zircons provide evidence for Mesoproterozoic tectonomagmatic events at 1200-1000 Ma during Grenville-age orogenesis. Detrital zircon U-Pb ages for Paleozoic strata show derivation from Andean basement, syn depositional magmatic sources (420-380 Ma), and distal sources of chiefly Mesoproterozoic basement (1650-900 Ma) in the Amazonian craton (Guyana shield) to the east or in possible continental terranes along the western margin of South America. Sedimentation during Jurassic-Early Cretaceous rifting is expressed in detrital zircon age spectra as Andean basement sources, recycled Paleozoic contributions, and igneous sources of Carboniferous-Permian (310-250 Ma) and Late Triassic-Early Jurassic (220-180 Ma) origin. Detrital zircon provenance during continued Cretaceous extension and postrift thermal subsidence recorded the elimination of Andean basement sources and increased influence of craton-derived drainage systems providing mainly Paleoproterozoic and Mesoproterozoic (2050-950 Ma) grains. By Eocene time, zircons from the Guyana shield (1850-1350 Ma) dominated the detrital signal in the easternmost Eastern Cordillera. In contrast, coeval Eocene deposits in the axial Eastern Cordillera contain Late Cretaceous-Paleocene (90-55 Ma), Jurassic (190-150 Ma), and limited Permian-Triassic (280-220 Ma) zircons recording initial uplift and exhumation of principally Mesozoic magmatic-arc rocks to the west in the Central Cordillera. Oligocene-Miocene sandstones of the proximal Llanos foreland basin document uplift-induced exhumation of the Eastern Cordillera fold-thrust belt and recycling of the Paleogene cover succession rich in both arc-derived detritus (dominantly 180-40 Ma) and shield-derived sediments (mostly 1850-950 Ma). Late Miocene-Pliocene erosion into the underlying Cretaceous section is evidenced by elimination of Mesozoic-Cenozoic zircons and increased proportions of 1650-900 Ma zircons emblematic of Cretaceous strata.
AB - Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) analyses of 29 samples from the Eastern Cordillera of Colombia reveal the origin of northern Andean basement and patterns of sedimentation during Paleozoic subsidence, Jurassic-Early Cretaceous extension, Late Cretaceous postrift subsidence, and Cenozoic shortening and foreland-basin evolution. U-Pb geochronological results indicate that presumed Precambrian basement is mainly a product of early Paleozoic mag-matism (520-420 Ma) potentially linked to subduction and possible collision. Inherited zircons provide evidence for Mesoproterozoic tectonomagmatic events at 1200-1000 Ma during Grenville-age orogenesis. Detrital zircon U-Pb ages for Paleozoic strata show derivation from Andean basement, syn depositional magmatic sources (420-380 Ma), and distal sources of chiefly Mesoproterozoic basement (1650-900 Ma) in the Amazonian craton (Guyana shield) to the east or in possible continental terranes along the western margin of South America. Sedimentation during Jurassic-Early Cretaceous rifting is expressed in detrital zircon age spectra as Andean basement sources, recycled Paleozoic contributions, and igneous sources of Carboniferous-Permian (310-250 Ma) and Late Triassic-Early Jurassic (220-180 Ma) origin. Detrital zircon provenance during continued Cretaceous extension and postrift thermal subsidence recorded the elimination of Andean basement sources and increased influence of craton-derived drainage systems providing mainly Paleoproterozoic and Mesoproterozoic (2050-950 Ma) grains. By Eocene time, zircons from the Guyana shield (1850-1350 Ma) dominated the detrital signal in the easternmost Eastern Cordillera. In contrast, coeval Eocene deposits in the axial Eastern Cordillera contain Late Cretaceous-Paleocene (90-55 Ma), Jurassic (190-150 Ma), and limited Permian-Triassic (280-220 Ma) zircons recording initial uplift and exhumation of principally Mesozoic magmatic-arc rocks to the west in the Central Cordillera. Oligocene-Miocene sandstones of the proximal Llanos foreland basin document uplift-induced exhumation of the Eastern Cordillera fold-thrust belt and recycling of the Paleogene cover succession rich in both arc-derived detritus (dominantly 180-40 Ma) and shield-derived sediments (mostly 1850-950 Ma). Late Miocene-Pliocene erosion into the underlying Cretaceous section is evidenced by elimination of Mesozoic-Cenozoic zircons and increased proportions of 1650-900 Ma zircons emblematic of Cretaceous strata.
UR - http://www.scopus.com/inward/record.url?scp=77956719648&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77956719648&partnerID=8YFLogxK
U2 - 10.1130/B30118.1
DO - 10.1130/B30118.1
M3 - Article
AN - SCOPUS:77956719648
SN - 0016-7606
VL - 122
SP - 1423
EP - 1442
JO - Bulletin of the Geological Society of America
JF - Bulletin of the Geological Society of America
IS - 9-10
ER -