Linking avian malaria parasitemia estimates from quantitative PCR and microscopy reveals new infection patterns in Hawai'i

Christa M. Seidl, Francisco C. Ferreira, Katy L. Parise, Kristina L. Paxton, Eben H. Paxton, Carter T. Atkinson, Robert C. Fleischer, Jeffrey T. Foster, A. Marm Kilpatrick

Research output: Contribution to journalArticlepeer-review

Abstract

Plasmodium parasites infect thousands of species and provide an exceptional system for studying host-pathogen dynamics, especially for multi-host pathogens. However, understanding these interactions requires an accurate assay of infection. Assessing Plasmodium infections using microscopy on blood smears often misses infections with low parasitemias (the fractions of cells infected), and biases in malaria prevalence estimates will differ among hosts that differ in mean parasitemias. We examined Plasmodium relictum infection and parasitemia using both microscopy of blood smears and quantitative polymerase chain reaction (qPCR) on 299 samples from multiple bird species in Hawai'i and fit models to predict parasitemias from qPCR cycle threshold (Ct) values. We used these models to quantify the extent to which microscopy underestimated infection prevalence and to more accurately estimate infection patterns for each species for a large historical study done by microscopy. We found that most qPCR-positive wild-caught birds in Hawaii had low parasitemias (Ct scores ≥35), which were rarely detected by microscopy. The fraction of infections missed by microscopy differed substantially among eight species due to differences in species’ parasitemia levels. Infection prevalence was likely 4–5-fold higher than previous microscopy estimates for three introduced species, including Zosterops japonicus, Hawaii's most abundant forest bird, which had low average parasitemias. In contrast, prevalence was likely only 1.5–2.3-fold higher than previous estimates for Himatione sanguinea and Chlorodrepanis virens, two native species with high average parasitemias. Our results indicate that relative patterns of infection among species differ substantially from those observed in previous microscopy studies, and that differences depend on variation in parasitemias among species. Although microscopy of blood smears is useful for estimating the frequency of different Plasmodium stages and host attributes, more sensitive quantitative methods, including qPCR, are needed to accurately estimate and compare infection prevalence among host species.

Original languageEnglish (US)
Pages (from-to)123-130
Number of pages8
JournalInternational Journal for Parasitology
Volume54
Issue number2
DOIs
StatePublished - Feb 2024

Keywords

  • Avian malaria
  • Hawaiian honeycreepers
  • Microscopy
  • Plasmodium
  • Prevalence
  • qPCR

ASJC Scopus subject areas

  • Parasitology
  • Infectious Diseases

Fingerprint

Dive into the research topics of 'Linking avian malaria parasitemia estimates from quantitative PCR and microscopy reveals new infection patterns in Hawai'i'. Together they form a unique fingerprint.

Cite this