Land Use Change Alters Soil Organic Carbon: Constrained Global Patterns and Predictors

Xingzhao Huang, Muhammed Mustapha Ibrahim, Yiqi Luo, Lifen Jiang, Ji Chen, Enqing Hou

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

Land use change (LUC) alters the global carbon (C) stock, but our estimation of the alteration remains uncertain and is a major impediment to predicting the global C cycle. The uncertainty is partly due to the limited number and geographical bias of observations, and limited exploration of its predictors. Here we generated a comprehensive global database of 5,980 observations from 790 articles. The number of sites evaluated is at least seven times larger than in previous meta-analyses. Our constrained estimates of different LUC's effects on soil organic C (SOC) and their variations across global climates reveal underestimation/overestimation in previous estimates. Converting forests and grasslands to croplands reduced SOC by 24.5% ± 1.53% (−11.03 ± 1.06 Mg ha−1) and 22.7% ± 1.22% (−8.09 ± 0.67 Mg ha−1), while 28.0% ± 1.56% (4.46 ± 0.42 Mg ha−1) and 33.5% ± 1.68% (5.8 ± 0.38 Mg ha−1) increases, respectively, were obtained in the reverse processes. Converting forests to grasslands decreased SOC by 2.1% ± 1.22% (−1.13 ± 0.44 Mg ha−1), while the reverse process increased SOC by 18.6% ± 1.73% (3.31 ± 0.51 Mg ha−1). Modeled relative importance of 10 drivers of LUC's impact on SOC revealed that higher initial SOC (iSOC) does not solely determine SOC loss in SOC-negative LUC scenarios as previously proposed. Across four decades, reconverting croplands to forests and grasslands recovered only 49.5% (6.1 ± 0.51 Mg ha−1) and 75.3% (7.0 ± 0.38 Mg ha−1) of the iSOC, respectively, indicating the need for protecting C-rich ecosystems. Our global data set advances information on LUC's effect on SOC and can be valuable to constrain Earth system models to reliably estimate global SOC stocks and plan climate change mitigation strategies.

Original languageEnglish (US)
Article numbere2023EF004254
JournalEarth's Future
Volume12
Issue number5
DOIs
StatePublished - May 2024
Externally publishedYes

Keywords

  • Earth system
  • anthropogenic carbon
  • climate change
  • global carbon data sets
  • terrestrial ecosystems

ASJC Scopus subject areas

  • General Environmental Science
  • Earth and Planetary Sciences (miscellaneous)

Fingerprint

Dive into the research topics of 'Land Use Change Alters Soil Organic Carbon: Constrained Global Patterns and Predictors'. Together they form a unique fingerprint.

Cite this