TY - JOUR
T1 - Kinetics of systemic cytokine and brain chemokine gene expression in murine Toxoplasma infection
AU - Aviles, Hernan
AU - Stiles, Jonathan
AU - O'Donnell, Phyllis
AU - Orshal, Julia
AU - Leid, Jeffrey
AU - Sonnenfeld, Gerald
AU - Monroy, Fernando
PY - 2008/12
Y1 - 2008/12
N2 - Toxoplasma gondii often migrates to the central nervous system in immunocompromised patients, where it induces a severe inflammation referred to as Toxoplasma encephalitis. The mechanisms involved in control of parasite multiplication and prevention of Toxoplasma encephalitis remain unclear. The objective of the present study was to characterize the inflammatory response in the brains of mice during acute T. gondii infection, with emphasis on the expression of chemokine receptors. Susceptible C57BL/6 mice were orally infected with 10 cysts of the low-virulent ME49 strain of T. gondii. Levels of cytokines (TNF-α, IFN-7, IL-10, IL-6, and IL-12p70) and chemokines (CCL/2MCP-1) were measured in plasma at 5, 10, 15, 20, and 30 days after infection. In addition, the mRNA expression of chemokines (CCL5/RANTES, CCL2/MCP-1, CCL4/MIP-1β) and chemokine receptors (CCR1, CCR2, CCR5, CCR7, CCR8, CXCR4, and CXR5) were measured in brain tissues at the same time points. Plasma levels of IFN-γ and CCL2/MCP-1 were highly expressed at day 5, whereas TNF-α had a moderate increase at day 5, peaked at day 10, and returned to normal levels by day 30. Plasma levels of IL-10, IL-6, and IL-12p70 were not detected throughout the study. Analyses of mRNA expression of chemokines and chemokine receptors in the brain showed that CCL5/RANTES, CCR7, CXCR4, and CXCR5 were upregulated, peaking after 10 days of T. gondii infection. IgM-specific antibody levels increased at day 5 and peaked at days 10 and 30, whereas IgG levels increased at day 10 and continued to increase thereafter, reaching maximum levels at day 30 postinfection (PI). Our results suggest that T. gondii infection is controlled at local and systemic levels, and that proinflammatory proteins and their receptors may be acting coordinately to induce stage conversion and prevent parasite multiplication and development of Toxoplasma encephalitis. The early production of IFN-γ and the delayed expression of CXCR4 and CXCR5 indicate that T. gondii induces an early robust cellular immune response, followed by a strong and sustained antibody-mediated immunity.
AB - Toxoplasma gondii often migrates to the central nervous system in immunocompromised patients, where it induces a severe inflammation referred to as Toxoplasma encephalitis. The mechanisms involved in control of parasite multiplication and prevention of Toxoplasma encephalitis remain unclear. The objective of the present study was to characterize the inflammatory response in the brains of mice during acute T. gondii infection, with emphasis on the expression of chemokine receptors. Susceptible C57BL/6 mice were orally infected with 10 cysts of the low-virulent ME49 strain of T. gondii. Levels of cytokines (TNF-α, IFN-7, IL-10, IL-6, and IL-12p70) and chemokines (CCL/2MCP-1) were measured in plasma at 5, 10, 15, 20, and 30 days after infection. In addition, the mRNA expression of chemokines (CCL5/RANTES, CCL2/MCP-1, CCL4/MIP-1β) and chemokine receptors (CCR1, CCR2, CCR5, CCR7, CCR8, CXCR4, and CXR5) were measured in brain tissues at the same time points. Plasma levels of IFN-γ and CCL2/MCP-1 were highly expressed at day 5, whereas TNF-α had a moderate increase at day 5, peaked at day 10, and returned to normal levels by day 30. Plasma levels of IL-10, IL-6, and IL-12p70 were not detected throughout the study. Analyses of mRNA expression of chemokines and chemokine receptors in the brain showed that CCL5/RANTES, CCR7, CXCR4, and CXCR5 were upregulated, peaking after 10 days of T. gondii infection. IgM-specific antibody levels increased at day 5 and peaked at days 10 and 30, whereas IgG levels increased at day 10 and continued to increase thereafter, reaching maximum levels at day 30 postinfection (PI). Our results suggest that T. gondii infection is controlled at local and systemic levels, and that proinflammatory proteins and their receptors may be acting coordinately to induce stage conversion and prevent parasite multiplication and development of Toxoplasma encephalitis. The early production of IFN-γ and the delayed expression of CXCR4 and CXCR5 indicate that T. gondii induces an early robust cellular immune response, followed by a strong and sustained antibody-mediated immunity.
UR - http://www.scopus.com/inward/record.url?scp=58549109229&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=58549109229&partnerID=8YFLogxK
U2 - 10.1645/GE-1309.1
DO - 10.1645/GE-1309.1
M3 - Article
C2 - 19127964
AN - SCOPUS:58549109229
SN - 0022-3395
VL - 94
SP - 1282
EP - 1288
JO - Journal of Parasitology
JF - Journal of Parasitology
IS - 6
ER -