Abstract
Antigen-antibody systems provide the flexibility of varying the kinetics and affinity of molecular interaction and studying the resulting effect on adhesion. In a parallel-plate flow chamber, we measured the extent and rate of adhesion of rat basophilic leukemia cells preincubated with anti- dinitrophenyl IgE clones SPE-7 or H1 26.82 to dinitrophenyl-coated polyacrylamide gel substrates in a linear shear field. Both of these IgEs bind dinitrophenyl, but H1 26.82 has a 10-fold greater on rate and a 30-fold greater affinity. Adhesion was found to be binary; cells either arrested irreversibly or continued at their unencumbered hydrodynamic velocity. Under identical conditions, more adhesion was seen with the higher affinity (higher on rate) IgE clone. At some shear rates, adhesion was robust with H1 26.82, but negligible with SPE-7. Reduction in receptor number or ligand density reduced the maximum level of adhesion seen at any shear rate, but did not decrease the shear rate at which adhesion was first observed. The spatial pattern of adhesion for both IgE clones is well represented by the first- order kinetic rate constant k(ad), and we have determined how k(ad) depends on ligand and receptor densities and shear rate. The rate constant k(ad) found with H1 26.82 was approximately fivefold greater than with SPE-7. The dependence of k(ad) on site density and shear rate for SPE-7 is complex: k(ad) increases linearly with antigen site density at low to moderate shear rates, but is insensitive to site density at high shear. k(ad) increases with shear rate at low site density but decreases with shear at high site density. With H1 26.82, the functional dependence of k(ad) with shear rate was similar. A though these data are consistent with the hypothesis that we have sampled both transport and reaction-limited adhesion regimes, they point out deficiencies in current theories describing cell attachment under flow.
Original language | English (US) |
---|---|
Pages (from-to) | 2597-2611 |
Number of pages | 15 |
Journal | Biophysical Journal |
Volume | 75 |
Issue number | 5 |
DOIs | |
State | Published - Nov 1998 |
ASJC Scopus subject areas
- Biophysics