TY - JOUR
T1 - Investigation of keratinase digestion to improve steroid hormone extraction from diverse keratinous tissues
AU - Dillon, Danielle
AU - Fernández Ajó, Alejandro
AU - Hunt, Kathleen E.
AU - Buck, C. Loren
N1 - Publisher Copyright:
© 2021 Elsevier Inc.
PY - 2021/8/1
Y1 - 2021/8/1
N2 - Monitoring the physiology of wild populations presents many technical challenges. Blood samples, long the gold standard of wildlife endocrinology studies, cannot always be obtained. The validation and use of non-plasma samples to obtain hormone data have greatly improved access to more integrated information about an organism's physiological state. Keratinous tissues like skin, hair, nails, feathers, or baleen store steroid hormones in physiologically relevant concentrations, are stable across decades, and can be used to retrospectively infer physiological state at prior points in time. Most protocols for steroid extraction employ physical pulverization or cutting of the sample, followed by mixing with a solvent. Such methods do produce repeatable and useful data, but low hormone yield and detectability issues can complicate research on small or rare samples. We investigated the use of keratinase, an enzyme that breaks down keratin, to improve the extraction and yield of corticosterone from vertebrate keratin tissues. Corticosterone content of keratinase-digested extracts were compared to non-keratinase extracts for baleen from three species of whale (blue, Balaenoptera musculus; bowhead, Balaena mysticetus; southern right, SRW; Eubalaena australis), shed skin from two reptiles (tegu lizard, Salvator merianae; narrow-headed garter snake, Thamnophis rufipunctatus), hair from arctic ground squirrel (AGS; Urocitellus parryii), feathers from Purple Martins (PUMA; Progne subis), and spines from the short-beaked echidna (Tachyglossus aculeatus). We tested four starting masses (10, 25, 50, 100 mg) for each sample; digestion was most complete in the 10 and 25 mg samples. A corticosterone enzyme immunoassay (EIA) was validated for all keratinase-digested extracts. In all sample types except shed skin from reptiles, keratinase digestion improved hormone yield, with PUMA feathers and blue whale baleen having the greatest increase in apparent corticosterone content (100% and 66% more hormone, respectively). The reptilian shed skin samples did not benefit from keratinase digestion, actually yielding less hormone than controls. With further optimization and refinement, keratinase digestion could greatly improve yield of steroid hormones from various wildlife epidermal tissue types, allowing more efficient use of samples and ultimately improving understanding of the endocrine physiology of wild populations.
AB - Monitoring the physiology of wild populations presents many technical challenges. Blood samples, long the gold standard of wildlife endocrinology studies, cannot always be obtained. The validation and use of non-plasma samples to obtain hormone data have greatly improved access to more integrated information about an organism's physiological state. Keratinous tissues like skin, hair, nails, feathers, or baleen store steroid hormones in physiologically relevant concentrations, are stable across decades, and can be used to retrospectively infer physiological state at prior points in time. Most protocols for steroid extraction employ physical pulverization or cutting of the sample, followed by mixing with a solvent. Such methods do produce repeatable and useful data, but low hormone yield and detectability issues can complicate research on small or rare samples. We investigated the use of keratinase, an enzyme that breaks down keratin, to improve the extraction and yield of corticosterone from vertebrate keratin tissues. Corticosterone content of keratinase-digested extracts were compared to non-keratinase extracts for baleen from three species of whale (blue, Balaenoptera musculus; bowhead, Balaena mysticetus; southern right, SRW; Eubalaena australis), shed skin from two reptiles (tegu lizard, Salvator merianae; narrow-headed garter snake, Thamnophis rufipunctatus), hair from arctic ground squirrel (AGS; Urocitellus parryii), feathers from Purple Martins (PUMA; Progne subis), and spines from the short-beaked echidna (Tachyglossus aculeatus). We tested four starting masses (10, 25, 50, 100 mg) for each sample; digestion was most complete in the 10 and 25 mg samples. A corticosterone enzyme immunoassay (EIA) was validated for all keratinase-digested extracts. In all sample types except shed skin from reptiles, keratinase digestion improved hormone yield, with PUMA feathers and blue whale baleen having the greatest increase in apparent corticosterone content (100% and 66% more hormone, respectively). The reptilian shed skin samples did not benefit from keratinase digestion, actually yielding less hormone than controls. With further optimization and refinement, keratinase digestion could greatly improve yield of steroid hormones from various wildlife epidermal tissue types, allowing more efficient use of samples and ultimately improving understanding of the endocrine physiology of wild populations.
KW - Corticosterone
KW - Enzyme immunoassay
KW - Keratin
KW - Keratinase
KW - Solid-phase extraction
UR - http://www.scopus.com/inward/record.url?scp=85105835194&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85105835194&partnerID=8YFLogxK
U2 - 10.1016/j.ygcen.2021.113795
DO - 10.1016/j.ygcen.2021.113795
M3 - Article
C2 - 33891932
AN - SCOPUS:85105835194
SN - 0016-6480
VL - 309
JO - General and Comparative Endocrinology
JF - General and Comparative Endocrinology
M1 - 113795
ER -