TY - JOUR
T1 - Introduced galliforms as seed predators and dispersers in Hawaiian forests
AU - Case, Samuel B.
AU - Postelli, Katherine
AU - Drake, Donald R.
AU - Vizentin-Bugoni, Jeferson
AU - Foster, Jeffrey T.
AU - Sperry, Jinelle H.
AU - Kelley, J. Patrick
AU - Tarwater, Corey E.
N1 - Publisher Copyright:
© 2022, The Author(s), under exclusive licence to Springer Nature Switzerland AG.
PY - 2022/10
Y1 - 2022/10
N2 - In altered communities, novel species’ interactions may critically impact ecosystem functioning. One key ecosystem process, seed dispersal, often requires mutualistic interactions between frugivores and fruiting plants, and functional traits, such as seed width, may affect interaction outcomes. Forests of the Hawaiian Islands have experienced high species turnover, and introduced galliforms, the largest of the extant avian frugivores, consume fruit from both native and non-native plants. We investigated the roles of two galliform species as seed dispersers and seed predators in Hawaiian forests. Using captive Kalij Pheasants (Lophura leucomelanos) and Erckel’s Francolins (Pternistis erckelii), we measured the probability of seed survival during gut passage and seed germination following gut passage. We also examined which seeds are being dispersed in forests on the islands of O’ahu and Hawai’i. We found that galliforms are major seed predators for both native and non-native plants, with less than 5% of seeds surviving gut passage for all plants tested and in both bird species. Gut passage by Kalij Pheasants significantly reduced the probability of seeds germinating, especially for the native plants. Further, larger-seeded plants were both less likely to survive gut passage and to germinate. In the wild, galliforms dispersed native and non-native seeds at similar rates. Overall, our results suggest the introduced galliforms are a double-edged sword in conservation efforts; they may help reduce the spread of non-native plants, but they also destroy the seeds of some native plants. Broadly, we show mutualism breakdown may occur following high species turnover, and that functional traits can be useful for predicting outcomes from novel species’ interactions.
AB - In altered communities, novel species’ interactions may critically impact ecosystem functioning. One key ecosystem process, seed dispersal, often requires mutualistic interactions between frugivores and fruiting plants, and functional traits, such as seed width, may affect interaction outcomes. Forests of the Hawaiian Islands have experienced high species turnover, and introduced galliforms, the largest of the extant avian frugivores, consume fruit from both native and non-native plants. We investigated the roles of two galliform species as seed dispersers and seed predators in Hawaiian forests. Using captive Kalij Pheasants (Lophura leucomelanos) and Erckel’s Francolins (Pternistis erckelii), we measured the probability of seed survival during gut passage and seed germination following gut passage. We also examined which seeds are being dispersed in forests on the islands of O’ahu and Hawai’i. We found that galliforms are major seed predators for both native and non-native plants, with less than 5% of seeds surviving gut passage for all plants tested and in both bird species. Gut passage by Kalij Pheasants significantly reduced the probability of seeds germinating, especially for the native plants. Further, larger-seeded plants were both less likely to survive gut passage and to germinate. In the wild, galliforms dispersed native and non-native seeds at similar rates. Overall, our results suggest the introduced galliforms are a double-edged sword in conservation efforts; they may help reduce the spread of non-native plants, but they also destroy the seeds of some native plants. Broadly, we show mutualism breakdown may occur following high species turnover, and that functional traits can be useful for predicting outcomes from novel species’ interactions.
KW - Galliformes
KW - Gamebirds
KW - Invasional meltdown
KW - Island ecology
KW - Novel ecosystem
UR - http://www.scopus.com/inward/record.url?scp=85132376706&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85132376706&partnerID=8YFLogxK
U2 - 10.1007/s10530-022-02830-6
DO - 10.1007/s10530-022-02830-6
M3 - Article
AN - SCOPUS:85132376706
SN - 1387-3547
VL - 24
SP - 3083
EP - 3097
JO - Biological Invasions
JF - Biological Invasions
IS - 10
ER -