Intrinsic resistance to inhibitors of fatty acid biosynthesis in Pseudomonas aeruginosa is due to efflux: Application of a novel technique for generation of unmarked chromosomal mutations for the study of efflux systems

Research output: Contribution to journalArticlepeer-review

109 Scopus citations

Abstract

Many strains of Pseudomonas aeruginosa are resistant to the antibiotics cerulenin and thiolactomycin, potent inhibitors of bacterial fatty acid biosynthesis. A novel yeast Flp recombinase-based technique was used to isolate an unmarked mexAB-oprM deletion encoding an efflux system mediating resistance to multiple antibiotics in P. aeruginosa. The experiments showed that the MexAB-OprM system is responsible for the intrinsic resistance of this bacterium to cerulenin and thiolactomycin. Whereas thiolactomycin was not a substrate of the MexCD-OprJ pump expressed in a Δ(mexAB-oprM) nfxB mutant, cerulenin was efficiently effluxed by the MexCD-OprJ system. It was also found that the MexAB-OprM system is capable of efflux of irgasan, a broad-spectrum antimicrobial compound used in media selective for Pseudomonas.

Original languageEnglish (US)
Pages (from-to)394-398
Number of pages5
JournalAntimicrobial Agents and Chemotherapy
Volume42
Issue number2
StatePublished - Feb 1998
Externally publishedYes

ASJC Scopus subject areas

  • Pharmacology
  • Pharmacology (medical)
  • Infectious Diseases

Fingerprint

Dive into the research topics of 'Intrinsic resistance to inhibitors of fatty acid biosynthesis in Pseudomonas aeruginosa is due to efflux: Application of a novel technique for generation of unmarked chromosomal mutations for the study of efflux systems'. Together they form a unique fingerprint.

Cite this