TY - JOUR
T1 - Interaction of sulfate groups with the surface of zirconia
T2 - An HRTEM characterization study
AU - Benaïssa, M.
AU - Santiesteban, J. G.
AU - Díaz, G.
AU - Chang, C. D.
AU - José-Yacamán, M.
PY - 1996
Y1 - 1996
N2 - High-resolution transmission electron microscopy (HRTEM) has been used to characterize the morphology and the surface structure at an atomic level of sulfated zirconia and sulfate-free zirconia. Our study shows that HRTEM can be used to directly observe sulfate layers adsorbed on the surface of zirconia crystallites. The results indicate that the presence of sulfate groups not only stabilizes the tetragonal zirconia phase, but also induces the formation of well-faceted small zirconia crystallites. In particular, it is observed that the presence of sulfate groups induces the preferential formation of relatively long-flat (110) plane of tetragonal zirconia. HRTEM images of this plane revealed the presence of an adsorbed sulfate layer. It is proposed that the geometry of the (110) plane is such that it can accommodate sulfate groups in a two- or threefold coordination. Although, zirconia crystallites with relatively long-flat {110} planes containing adsorbed sulfate groups were clearly predominant in the sulfated zirconia catalyst; its role in the formation of the highly acidic sites is not clear. Our study also reveals the presence of few zirconia crystallites containing rough surfaces, crystallographically speaking high-Miller-index surfaces, which if they were to contain sulfate groups, they could be the locus of the highly acidic sites. Thus, it is suggested that caution must be taken when performing spectroscopic studies using techniques such as IR, NMR, XPS, and Raman to distinguish between spectator sulfate groups, which could be a majority if they were the ones observed on the (110) plane, and those participating in the formation of the highly acidic site, which could be associated to the few high-Miller-index-containing zirconia crystallites.
AB - High-resolution transmission electron microscopy (HRTEM) has been used to characterize the morphology and the surface structure at an atomic level of sulfated zirconia and sulfate-free zirconia. Our study shows that HRTEM can be used to directly observe sulfate layers adsorbed on the surface of zirconia crystallites. The results indicate that the presence of sulfate groups not only stabilizes the tetragonal zirconia phase, but also induces the formation of well-faceted small zirconia crystallites. In particular, it is observed that the presence of sulfate groups induces the preferential formation of relatively long-flat (110) plane of tetragonal zirconia. HRTEM images of this plane revealed the presence of an adsorbed sulfate layer. It is proposed that the geometry of the (110) plane is such that it can accommodate sulfate groups in a two- or threefold coordination. Although, zirconia crystallites with relatively long-flat {110} planes containing adsorbed sulfate groups were clearly predominant in the sulfated zirconia catalyst; its role in the formation of the highly acidic sites is not clear. Our study also reveals the presence of few zirconia crystallites containing rough surfaces, crystallographically speaking high-Miller-index surfaces, which if they were to contain sulfate groups, they could be the locus of the highly acidic sites. Thus, it is suggested that caution must be taken when performing spectroscopic studies using techniques such as IR, NMR, XPS, and Raman to distinguish between spectator sulfate groups, which could be a majority if they were the ones observed on the (110) plane, and those participating in the formation of the highly acidic site, which could be associated to the few high-Miller-index-containing zirconia crystallites.
UR - http://www.scopus.com/inward/record.url?scp=0000386576&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0000386576&partnerID=8YFLogxK
U2 - 10.1006/jcat.1996.0231
DO - 10.1006/jcat.1996.0231
M3 - Article
AN - SCOPUS:0000386576
SN - 0021-9517
VL - 161
SP - 694
EP - 703
JO - Journal of Catalysis
JF - Journal of Catalysis
IS - 2
M1 - 0231
ER -