TY - JOUR
T1 - Influence of fertilization and atmospheric CO2 enrichment on ecosystem CO2 and H2O exchanges in single- and multiple-species grassland microcosms
AU - Fredeen, Arthur L.
AU - Koch, George W.
AU - Field, Christopher B.
N1 - Funding Information:
Technical support from numerous project personnel at Carnegie and Stanford is gratefully acknowledged, especially Howard Whitted, Sunia Yang, and Brian Welsh. Support for this research was provided by the National Science Foundation, The US Dept. of Energy, and the A.W. Mellon Foundation. This work contributes to the Global Change and Terrestrial Ecosystems (GCTE) Core Project of the International Geosphere-Biosphere Programme (IGBP).This is CIWDPB publication 1384.
PY - 1998/10
Y1 - 1998/10
N2 - This paper reports on measurements of net CO2 and H2O exchange from single- and multiple-species microcosms composed of California annual grassland species grown at either ambient or elevated (ambient + 36 Pa) CO2. Microcosms consisted of grassland species grown in PVC tubes (~ 0.95 m deep x 0.2 m diameter) containing ~45 kg of either serpentine or sandstone derived soil or parent material in open-top enclosures under ambient meteorological conditions. Half of the microcosms were left unfertilized (low nutrient) while the other half received an intermediate level of a slow-release (N,P,K) fertilizer (high nutrient). Gas exchange was performed by sealing individual microcosms within a transparent chamber (on clear sunny days) and coupling this to an open gas-exchange system. In fertilized single-species microcosms, elevated CO2 consistently enhanced net 'ecosystem' CO2 exchange (NCE) on a ground area basis in both early and late spring. Among unfertilized single-species microcosms, no significant trends or differences were observed in NCE between those grown at ambient versus elevated CO2. The NCE in sandstone and serpentine multiple-species microcosms was monitored seasonally over a majority of the 1993-1994 growing season. Rates were largely unaffected by growth CO2 or fertilization until after mid-February, 1994. Water-use efficiency (WUE = NCE/evapotranspiration (ET)) was generally enhanced by elevated CO2, but this was primarily a result of enhancements in NCE as opposed to decreases in ET. Enhancements in NCE by elevated CO2 in fertilized single-species microcosms at the growth-CO2 concentration were partially explained by higher above-ground biomass in elevated CO2 microcosms. However, ecosystem-level 'acclimation' occurred such that microcosms grown at elevated CO2 consistently had lower NCE than ambient CO2 treatments at a single measurement CO2 concentration (ambient or elevated). The reduction in apparent ecosystem-level photosynthetic capacity in elevated CO2 microcosms was accompanied by decreases in foliar Rubisco activity, such that NCE measured at ambient CO2 was highly correlated. (r = 0.98) with foliar Rubisco activity across the three single-species microcosms in which it was measured.
AB - This paper reports on measurements of net CO2 and H2O exchange from single- and multiple-species microcosms composed of California annual grassland species grown at either ambient or elevated (ambient + 36 Pa) CO2. Microcosms consisted of grassland species grown in PVC tubes (~ 0.95 m deep x 0.2 m diameter) containing ~45 kg of either serpentine or sandstone derived soil or parent material in open-top enclosures under ambient meteorological conditions. Half of the microcosms were left unfertilized (low nutrient) while the other half received an intermediate level of a slow-release (N,P,K) fertilizer (high nutrient). Gas exchange was performed by sealing individual microcosms within a transparent chamber (on clear sunny days) and coupling this to an open gas-exchange system. In fertilized single-species microcosms, elevated CO2 consistently enhanced net 'ecosystem' CO2 exchange (NCE) on a ground area basis in both early and late spring. Among unfertilized single-species microcosms, no significant trends or differences were observed in NCE between those grown at ambient versus elevated CO2. The NCE in sandstone and serpentine multiple-species microcosms was monitored seasonally over a majority of the 1993-1994 growing season. Rates were largely unaffected by growth CO2 or fertilization until after mid-February, 1994. Water-use efficiency (WUE = NCE/evapotranspiration (ET)) was generally enhanced by elevated CO2, but this was primarily a result of enhancements in NCE as opposed to decreases in ET. Enhancements in NCE by elevated CO2 in fertilized single-species microcosms at the growth-CO2 concentration were partially explained by higher above-ground biomass in elevated CO2 microcosms. However, ecosystem-level 'acclimation' occurred such that microcosms grown at elevated CO2 consistently had lower NCE than ambient CO2 treatments at a single measurement CO2 concentration (ambient or elevated). The reduction in apparent ecosystem-level photosynthetic capacity in elevated CO2 microcosms was accompanied by decreases in foliar Rubisco activity, such that NCE measured at ambient CO2 was highly correlated. (r = 0.98) with foliar Rubisco activity across the three single-species microcosms in which it was measured.
KW - California annual grassland
KW - Ecosystem WUE
KW - Ecosystem photosynthesis
KW - Elevated CO
KW - Grassland microcosms
KW - Mediterranean climate
UR - http://www.scopus.com/inward/record.url?scp=0031655725&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0031655725&partnerID=8YFLogxK
U2 - 10.1016/S0098-8472(98)00033-1
DO - 10.1016/S0098-8472(98)00033-1
M3 - Article
AN - SCOPUS:0031655725
SN - 0098-8472
VL - 40
SP - 147
EP - 157
JO - Environmental and Experimental Botany
JF - Environmental and Experimental Botany
IS - 2
ER -