Increased vegetation growth and carbon stock in China karst via ecological engineering

Xiaowei Tong, Martin Brandt, Yuemin Yue, Stephanie Horion, Kelin Wang, Wanda De Keersmaecker, Feng Tian, Guy Schurgers, Xiangming Xiao, Yiqi Luo, Chi Chen, Ranga Myneni, Zheng Shi, Hongsong Chen, Rasmus Fensholt

Research output: Contribution to journalArticlepeer-review

265 Scopus citations

Abstract

Afforestation and reforestation projects in the karst regions of southwest China aim to combat desertification and improve the ecological environment. However, it remains unclear at what scale conservation efforts have impacted on carbon stocks and if vegetation regrowth occurs at a large spatial scale as intended. Here we use satellite time series data and show a widespread increase in leaf area index (a proxy for green vegetation cover), and aboveground biomass carbon, which contrasted negative trends found in the absence of anthropogenic influence as simulated by an ecosystem model. In spite of drought conditions, aboveground biomass carbon increased by 9% (+0.05 Pg C y-1), mainly in areas of high conservation effort. We conclude that large scale conservation projects can contribute to a greening Earth with positive effects on carbon sequestration to mitigate climate change. At the regional scale, such ecological engineering projects may reduce risks of desertification by increasing the vegetation cover and reducing the ecosystem sensitivity to climate perturbations.

Original languageEnglish (US)
Pages (from-to)44-50
Number of pages7
JournalNature Sustainability
Volume1
Issue number1
DOIs
StatePublished - Jan 1 2018

ASJC Scopus subject areas

  • Global and Planetary Change
  • Food Science
  • Geography, Planning and Development
  • Ecology
  • Renewable Energy, Sustainability and the Environment
  • Urban Studies
  • Nature and Landscape Conservation
  • Management, Monitoring, Policy and Law

Fingerprint

Dive into the research topics of 'Increased vegetation growth and carbon stock in China karst via ecological engineering'. Together they form a unique fingerprint.

Cite this