Abstract
High-molecular-weight, anionic polyacrylamide (PAM) is added to irrigation water to reduce soil erosion during furrow irrigation of crops. The chemical nature of PAM, together with the observation that the polymer can be biotransformed by soil bacteria, led us to question the impact of PAM treatment on the fate of coapplied agrochemicals. The herbicides, atrazine (nonionic) and 2,4-D (anionic), were tested for pesticide sorption, desorption, and degradation in PAM-treated and untreated soils. Sorption of atrazine and 2,4-D in soil was unaffected by PAMtreatment, as was atrazine desorption. However, 2,4-D desorbed more readily from the PAM-treated soil than from untreated soil. With respect to pesticide degradation, mineralization of the 2,4-D aromatic ring was not impacted by PAM treatment, but decarboxylation of the 2,4-D carboxylic acid side chain was significantly reduced in the PAM-treated soil. Limited mineralization (7 to 10%) of atrazine was observed in both soils. However, in PAMtreated soils atrazine conversion to 14CO2 and bound residue components was significantly reduced, and there was an increase in the level of methanol extractable metabolites. These results may indicate that PAM application can alter the environmental fate of some pesticides in soils, especially under the high dose treatment conditions examined in this study.
Original language | English (US) |
---|---|
Pages (from-to) | 133-147 |
Number of pages | 15 |
Journal | Soil and Sediment Contamination |
Volume | 9 |
Issue number | 2 |
State | Published - 2000 |
Keywords
- 2,4-dichlorophenoxycarboxylic acid
- Biodegradation
- Erosion
- PAM
ASJC Scopus subject areas
- Environmental Chemistry
- Soil Science
- Pollution
- Health, Toxicology and Mutagenesis